Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

5. To complete the theory it is proper to calculate the inverse coefficients 
21, 
2 
23, 
g, 
9JÎ 
©, 
g , 
2, 
m, 
9?, 
? 
-AF--BG 
9 
X 
— 
(Ad 4 
1 
abed 3 
+ 
6 
ac 3 d 2 
— 
4 
b 3 æ 
— 
16 
W 
+ 
39 
bàd 
— 
36 
c 6 
+ 
12 
which, omitting the factor 9, is 
= 3 (ad- — 3bed + 2c 3 ) 2 — 4d? (ard 2 — (ktbed + 4ac 3 + 4b 3 d — 3b' 2 c 2 ), 
that is = 3 TT r2 — 4cZ 2 C7 ; and calculating in like manner the other coefficients, the system 
is found to be 
3X 2 -4a'U , 3XY -4>abU , 3XZ + (2ac — №) U, 3XW+ (5ad- %c) U, 
3YX -4>abU , 3F 2 -4acU , 3YZ -(lad+3bc) U, 3YW + (2bd — 6c 2 ) U, 
3ZX +(2ac-6b 2 )U, 3ZY ~(lad + 3bc)U, 3Z 2 -4bdU , 3ZW -4cdU 
3 WX + (5ad - 9be) U, 3 WY -f (2bd - 6c 2 ) U, 3 WZ - 4<cd U, , 3 W 2 - 4d 2 U 
6. Let (X, p, v, p) be any arbitrary multipliers, and write 
21, 
4?, 
©, 
2 fi, v, p), 
23, 
g, 
m 
©, 
g, 
®, 
2, 
m, 
9î, 
23
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.