Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

27 4 
ON CERTAIN DEVELOPABLE SURFACES. 
[344 
L 2 = 9 x 
3P = 64 x 
JV 2 = 96 x 
2MN =96 x 
2NL — 36 x 
2LM = 48 x 
a 4 e 2 + 1 
cc 3 c 2 e + 4 
a 2 b 2 ce — 8 
a 2 c 4 + 4 
ab 2 c 3 — 16 
6 4 c 2 + 16 
co 2 b 2 c 2 + 9 
ctb 4 c - 24 
b 6 + 16 
a 4 c 2 + 1 
cvPc - 4 
a 2 b 4 + 4 
d 3 bc 2 — 3 
cc 2 b 3 c + 10 
cob 5 - 8 
a 4 ce + 1 
a :i b‘ 2 e - 2 
a 3 c 3 + 2 
ar/rc 2 — 8 
ab 4 c + 8 
o?bce — 3 
a 2 b s e + 4 
a 2 bc 3 — 6 
ab 3 c 2 +20 
Vc - 16 
13. It is now easy to form the seven component terms of the determinant, and 
thence the determinant itself; each of the component terms divides by 576, and 
omitting this factor, the sum of the seven terms divides by 2; the result is 
co 7 ce 4 
+ 
3 
3 
+ 
9 
a 6 c 3 e 2 
+ 
28 
— 
10 
+ 
120 
+ 
18 
— 
72 
a 5 b 2 c 2 e 3 
— 
96 
+ 
24 
— 
360 
— 
72 
— 
144 
+ 
144 
4- 
360 
— 
144 
a 5 c 5 e 2 
+ 
90 
+ 
15 
+ 
399 
+ 
42 
_ 
276 
a 4 b 4 ce 3 
+ 
24 
+ 
72 
+ 
144 
+ 
192 
4- 
360 
— 
480 
- 
720 
4- 
480 
a 4 b 2 c 4 e 2 
— 
384 
— 
168 
- 
1944 
— 
216 
_ 
168 
_ 
144 
4- 
1584 
+ 
288 
co 4 c 7 e 
+ 
108 
+ 
60 
4* 
444 
+ 
12 
— 
300 
a 3 b 6 e 3 
+ 
32 
— 
96 
— 
128 
_ 
288 
+ 
384 
+ 
576 
_ 
384 
a 3 b 4 c 3 e 2 
+ 
568 
+ 
200 
+ 
3024 
— 
288 
— 
168 
+ 
1056 
+ 
3504 
+ 
480 
a 3 b 2 c 6 e 
— 
224 
— 
112 
— 
2616 
4“ 
432 
_ 
48 
— 
576 
+ 
1752 
+ 
720 
a 3 c 9 
+ 
27 
4- 
18 
+ 
108 
— 
72 
a 2 b 6 c 2 e 2 
+ 
384 
— 
1152 
+ 
2496 
2304 
+ 
4032 
— 
2304 
a 2 b 4 c 5 e 
— 
696 
+ 
6336 
— 
2304 
4* 
48 
+ 
1920 
— 
3552 
— 
3840 
aW 
192 
— 
336 
+ 
1296 
+ 
288 
— 
864 
ab s ce 2 
— 
1152 
— 
3072 
+ 
1536 
_ 
2304 
+ 
1536 
ab e c 4 e 
+ 
1440 
— 
6912 
+ 
3840 
— 
1536 
+ 
2496 
+ 
4992 
ab 4 c 7 
— 
408 
+ 
48 
— 
3456 
_ 
288 
+ 
2880 
b 10 e 2 
512 
+ 
1024 
b s c 3 e 
— 
640 
+ 
2304 
— 
2048 
_ 
1536 
b s c 6 
+ 
192 
+ 
384 
+ 
2304 
- 
2304 
where the first column is the Hessian. 
14. This divides as it should do by 
U = 
and the quotient, which is the Prohessian, is found to be 
PU = 
a 3 e 2 
+ 1 
a 2 c 2 e 
+ 6 
ab 2 ce 
- 24 
ac 4 
+ 9 
b 4 e 
+ 16 
b 2 c 3 
- 8 
sian, is 
found 
a 4 ce 2 
+ 3 
co 3 c 3 e 
+ 10 
a 2 b 2 c 2 e 
- 24 
a 2 c 5 
+ 3 
ccb 4 ce 
- 24 
ab 2 c 4 
+ 24 
b 6 e 
+ 32 
b 4 c 3 
- 24
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.