Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

349] 
ON A CASE OF THE INVOLUTION OF CUBIC CURVES. 
325 
Article Nos. 33 to 38, relating to the Tangents at a Node or Critic Centre. 
33. I proceed to investigate the equation of the tangents at the node of the curve 
xyz + k (x + y + zf (Xx + fiy + vz) = 0 ; 
it will be recollected that if x, y, z are the coordinates of the node, then we have 
cc : y : * : cc + y + z : + W + g 1 —: I :1- 
Representing for a moment the equation of the curve by U = 0, then the second 
derived functions of U are 
k . 2 (Xx + fiy + vz) + 4k(x + y + z) A, 
k . 2 (Xx + /u,y + vz) + 4k (x + y + z) ¡i, 
k. 2 (Xx + ¡iy + vz) + 4k (x + y + z) v, 
x + k . 2 (Xx + gy + vz) + 2k (x + y + z) (/a + v), 
y -\-k . 2 (Xx + fiy + vz) + 2k (x + y + z) (v + A), 
z + k. 2 (Xx + ¡zy + vz) + 2k (x -1- y z) (A + /a), 
or calling these (a, h, c, f g, h) respectively, and substituting the values x = 
we find 
07 8&A 2 k /n 
a — 2k -|—Q-, — ~0 (Q + 4A), 
1 
0+1 
&c., 
with the like values for b, c; and 
j, 1 ^. 4k . . 2k ( 0 1 a a a \ 
f=e + \ Jr * k+ T (fi+v)= T\eTx. 2A + fl + 2 '‘ +2 ")’ 
where the term in ( ) is 
6 (6 + A) (6 + /a) (6 + v) 
0 + X' -10 2 
+ 0 + 2 g + 2v, 
— 2 (6 + /a) (6 + v) 
0 
+ 0 + 2/a + 2 v, 
26-2g-2v- 2f ^+0 + 2y, + 2v, 
= — 0 — 
’¿¡JbV 
NT’ 
that is
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.