330
ON A CASE OF THE INVOLUTION OF CUBIC CURVES.
[3 49
r
I put for greater convenience
so that X = 0, Y =
the critic centres.
X = -
©! ( \X
+
+V v z_
I2I3 V#L "l - A 0i + y 0i -f- v)
Y = —
Z = -
\x
+
yy
+
vz
kk \0 3 "h A 0 3 + y 0 3 + v)
a
Xx
+
WJ
+-
vz
l\ 1-2 \03 "h A 0 3 -\- y 0 3 + V/
0, Z = 0 are the equations of the sides of the triangle formed by
42. Then X, Y, Z may if we please be considered as new coordinates replacing
the original coordinates x, y, z\ the relation between the two sets being given by the
equations last written down; the values of x, y, z in terms of X, Y, Z are given by
the converse system
X = 07+A X + 0~+X Y + ^+A Z ’
y=
z =
0\ + y
1
01 + V
X +
X +
7j—-— Y + ~—Z,
0 3 + y 0 3 + y
Y +
0 3 + v 0 3 + v
Z.
43. To show the identity of the two systems, I start
one ; this gives
from the last-mentioned
02 + \’
1
03 + A
= X
1 1 1
01 + A 0 3 + A 0 3 + A
^ 02 + fl’
1
03 + y
111
01 + + 02 + y* 0 3 + y
1
1
111
0 2 + V’
0 3 + V
01 + V ’ 02 + V ’ 03+ V
where the coefficient of X is
_ _ _ (y -v)(v- A) (A - y) (0 2 - 0 3 ) (0 S - fl) (0x - 0 3 )
(0i + A) (0 1 + y) (0 1 + v) (02 + A) (02 + y ) (02 + v) (0 3 + A) (# 3 + y) (0 3 + v) ’
or, what is the same thing,
_ (y — v) (v — A) (A — y) 3
©1@ 2 ©3
The first side is a linear function of x, y, z which vanishes for
x : y '■ z = 0^ : 0^ : faYTv’