349
tical
349] ON A CASE OF THE INVOLUTION OF CUBIC CURVES. 333
Second terra, writing it out in full and collecting the terms which contain
0i 4- A
, is
= -2
0 1
1 1
+
0] 4" A \0 2 4" № 0 2 4" v.
whereof the first part is
22
Lb V
^ +
8-j (0 1 + A) \0 3 + /jL 0 2 + vj ’
~ ^ lS ^ + A S (9 2 + A + ^0i + A 0 2 4-A’
= - 0i2 ~n—^~ 1
0i + A 0.> -f- A 0 1 — 0-2 \0-2 4* A 0] A/
_ 2 2 _0^ /2_ 2\ __ 4 2
xm \'e* e x -e % \e % ej’ 0 2 0*
2
0„ :
and the second part is
-l
x s . - 2
A 2
0,1 0 2 + A 0 2 + A (01 + A) (0 a 4-A)[ ’
2 i- A «, A 1 V /_A* A 2
= _ J“_ JV X V x _
0! r 01 + A 0 a 4- A 01 - 02 ~ V02 4- A 0! + a; J ’
and observing that
2 = 2K<V r+x ^ = s (ft + X) - 20A + ft=S ,
= 30i 4 (A + 4* v) — 60] 4 0] 2 . '-jr,
Vi
— — 0i + A -T ¡jb v,
A 2
with the like value for 2 -a , the second part is
0 2 + A 1
u-^A^-ft+ft], =-|(i-i), =o.
47. Hence the whole second term is —~w> an d combining the two terms we
have
coeff. XY = f- — f = 0.
Vo if9.
In the same manner precisely it appears that
coeff. XZ =
0.