Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

338 
ON A CASE OF THE INVOLUTION OF CUBIC CURVES. 
[349 
— 0^ — 0 2 2 + (X + + v) (#! — 0 2 ) + \yv — Q-'j , 
— (@1 — @2) (^1 + 0 2 + \+fl+V — > 
= (0i — 0 2 ) (A + /x + v + 300 ; 
©1 — ©2 = 0i 3 — 0 2 3 + + y + v) (0i 2 — 02 2 ) + (^v + v\ + Ayli) (0j — 0 2 ), 
= (0 X — 0 2 ) [0! 3 + 0J02 + 0./ 4" (A + fl + v) (0! + 0 2 ) + ¡XV + v\ + AyU/}, 
= (01 — 0 2 ) • {601 2 4- 2 (A + /x + v) 0i] : 
and thence 
A ' 4- R' 4, 
T=i- 9 ?1 ^ I + X + ^ + ,). 
Moreover 
y/ V' if) ù \ f I Py I ^ 1 
- Wl ^ {(^ + X) ( ^ f + A) + (01 + fl) (02 + /x) + (0! + *) (02 + v)\ ’ 
= {e ' ~ 0,) {(5U\)' + (0,+V)* + (5T+O s } ’ 
and hence 
£ = (30i + A + /a + v 
\X fXJJ vz 
0i -f- A 0i -j- fjb 0i v 
2©j ( \x fxy vz 
+ 77\— No + 
30J 2 ((0i + A) 2 (0i + yti) 2 (0i + v)-j 
in which we have only now to substitute (A, /x, v) = (or s , /3 -3 , y -3 ) and 0j = 
have 
n . M . M n M 
0i + ^- ^, 0i + P ^^ ^ > 
where i¥ = (/3y — a 2 ) = (/3y + ya + a/3), and then observing that 
** +x+ * + -- M (?+b + ?) - jV 
-1 
a^y‘ 
the equation 8=0 becomes 
2 (/3y + ya + a/3) ^ ^ + 3 (ouc + j3y + yz) = 0, 
or, what is the same thing, 
(2/3 7 + a») l + (2 7 a + /3°) | + (2«/3 + 7 =) i = 0, 
which agrees with a former result. 
We
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.