338
ON A CASE OF THE INVOLUTION OF CUBIC CURVES.
[349
— 0^ — 0 2 2 + (X + + v) (#! — 0 2 ) + \yv — Q-'j ,
— (@1 — @2) (^1 + 0 2 + \+fl+V — >
= (0i — 0 2 ) (A + /x + v + 300 ;
©1 — ©2 = 0i 3 — 0 2 3 + + y + v) (0i 2 — 02 2 ) + (^v + v\ + Ayli) (0j — 0 2 ),
= (0 X — 0 2 ) [0! 3 + 0J02 + 0./ 4" (A + fl + v) (0! + 0 2 ) + ¡XV + v\ + AyU/},
= (01 — 0 2 ) • {601 2 4- 2 (A + /x + v) 0i] :
and thence
A ' 4- R' 4,
T=i- 9 ?1 ^ I + X + ^ + ,).
Moreover
y/ V' if) ù \ f I Py I ^ 1
- Wl ^ {(^ + X) ( ^ f + A) + (01 + fl) (02 + /x) + (0! + *) (02 + v)\ ’
= {e ' ~ 0,) {(5U\)' + (0,+V)* + (5T+O s } ’
and hence
£ = (30i + A + /a + v
\X fXJJ vz
0i -f- A 0i -j- fjb 0i v
2©j ( \x fxy vz
+ 77\— No +
30J 2 ((0i + A) 2 (0i + yti) 2 (0i + v)-j
in which we have only now to substitute (A, /x, v) = (or s , /3 -3 , y -3 ) and 0j =
have
n . M . M n M
0i + ^- ^, 0i + P ^^ ^ >
where i¥ = (/3y — a 2 ) = (/3y + ya + a/3), and then observing that
** +x+ * + -- M (?+b + ?) - jV
-1
a^y‘
the equation 8=0 becomes
2 (/3y + ya + a/3) ^ ^ + 3 (ouc + j3y + yz) = 0,
or, what is the same thing,
(2/3 7 + a») l + (2 7 a + /3°) | + (2«/3 + 7 =) i = 0,
which agrees with a former result.
We