340
ON A CASE OF THE INVOLUTION OF CUBIC CURVES.
[349
and
0. 2 2 ©x — 62%.2 = 6.?6x — 6^6.? + — 0^8») {/XV + V\+ \/x) + (d£ — 8i) \/XV,
= l 3 {8^8^ — 8282 {/iv + v\ + A,/jl) — (82 + 8. 2 ) \/xv],
— l 3 {8 1 1 8.f + 828« {8280 + 8382 + 8 2 ) — ^ (81 + 8 2 ) 828383),
= I38282 {^8382 + ^ 83 {82 + 0 2 )}>
“iWAlW.-^i + W
= - l 828.213 s ;
so that we have
K _ì_ = _IL_
K • l *82 828Ì ' 2 ~ 2
82 ’
that is
K=-ikkV,
and the equation of the nodal cubic is
- * №4* v + yg%) + e,n + g^) - A- (£+ f ) V+*)■= 0.
54. To complete the reduction we have
coeff. p = I -1=^ (flfe, - №) ;
coeff. F 2 J£ =
1 _8i_28l
(82 + A) ((9., + /x) (0 3 + v) 0 2 2 0o0 :; ’
®! ^ 8, + A
82 s
®2 8 3 + X
8Ì83
® a 8 s + 28-2
82 s
<8)2 82
8?83
_ 4 ®i W
83 em
=~rn®m em ’
so that substituting for 0 2 2 ®] — 6f% 2 its value = — \ 8,8.,1 s , the terms in F 3 and Y 2 Z
—* w *k( p -***)>
and in like manner the terms in YZ 1 and Z s are
= + *№¿(1 T» + P),
are