351]
ON CUBIC CONES AND CURVES.
409
On the relation of the two forms a? + y 3 + z 3 + 61 xyz = 0, and (X + Y + Z) 3 + 6kX YZ = 0.
Nos. 21 to 24.
21. Starting with the form x 3 + y 3 + z 3 + 6lxyz = 0, and writing
then we have
x =
— 2 lx + y + z,
Y =
x — 2 ly + z,
Z =
x + y — 2 Iz,
XYZ =
— 21 (a? 3 + y 3 + z 3 )
+ (1 — 21 + 4>l 2 ) (y 2 z + yz 2 + z 2 x + zx 2 + x 2 y + xy 2 )
+ 2 (1 — 31 — 41 3 ) xyz,
X+Y+Z= 2 (1 - l)(x + y + z),
and thence
(X + F + Z) 3 = 8(1 — I) 3 (x 3 + y 3 + z 3 )
+ 24(1 — I) 3 (y 2 z + yz 2 + z 2 x + zx 2 + x 2 y + xy 2 )
+ 48 (1 — I) 3 xyz,
and we thus obtain
(1-21 + U 2 ) (X+Y+Z) 3 + 24 (l -1 ) 3 XYZ
= 8 (21 + l) 2 (l — l) 3 (x 3 + y 3 + z 3 + 6lxyz) ;
or, what is the same thing,
if
(X + Y + Z) 3 + QkXYZ - 8 (2 * + 1)8 (a 3 + y 3 + z 3 + Qlxyz),
k =
4(Z-1) 3
1-21 + M 2 '
22. For the form
we find
(X + Y+ Z) 3 + QkXYZ — 0,
S= (1 +ky,
— 6 (1 + k) 2
+ 8 (1 + k)
-3
= k 3 (4 + k)
T = - 8(1 +k) 3
+ 72(l + ky
- 128 (1 + k) 3
+ 72(1 +k) 2
- 8
= — 8k 1 (6 + 6k + k 2 ),
C. V.
52