Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

351] 
ON CUBIC CONES AND CURVES. 
409 
On the relation of the two forms a? + y 3 + z 3 + 61 xyz = 0, and (X + Y + Z) 3 + 6kX YZ = 0. 
Nos. 21 to 24. 
21. Starting with the form x 3 + y 3 + z 3 + 6lxyz = 0, and writing 
then we have 
x = 
— 2 lx + y + z, 
Y = 
x — 2 ly + z, 
Z = 
x + y — 2 Iz, 
XYZ = 
— 21 (a? 3 + y 3 + z 3 ) 
+ (1 — 21 + 4>l 2 ) (y 2 z + yz 2 + z 2 x + zx 2 + x 2 y + xy 2 ) 
+ 2 (1 — 31 — 41 3 ) xyz, 
X+Y+Z= 2 (1 - l)(x + y + z), 
and thence 
(X + F + Z) 3 = 8(1 — I) 3 (x 3 + y 3 + z 3 ) 
+ 24(1 — I) 3 (y 2 z + yz 2 + z 2 x + zx 2 + x 2 y + xy 2 ) 
+ 48 (1 — I) 3 xyz, 
and we thus obtain 
(1-21 + U 2 ) (X+Y+Z) 3 + 24 (l -1 ) 3 XYZ 
= 8 (21 + l) 2 (l — l) 3 (x 3 + y 3 + z 3 + 6lxyz) ; 
or, what is the same thing, 
if 
(X + Y + Z) 3 + QkXYZ - 8 (2 * + 1)8 (a 3 + y 3 + z 3 + Qlxyz), 
k = 
4(Z-1) 3 
1-21 + M 2 ' 
22. For the form 
we find 
(X + Y+ Z) 3 + QkXYZ — 0, 
S= (1 +ky, 
— 6 (1 + k) 2 
+ 8 (1 + k) 
-3 
= k 3 (4 + k) 
T = - 8(1 +k) 3 
+ 72(l + ky 
- 128 (1 + k) 3 
+ 72(1 +k) 2 
- 8 
= — 8k 1 (6 + 6k + k 2 ), 
C. V. 
52
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.