362]
471
362.
NOTE ON LOBATSCHEWSKY’S IMAGINARY GEOMETRY.
[From the Philosophical Magazine, vol. xxix. (I860), pp. 231—233.]
Writing down the equations
1
> = cos a =
cos a
cos A + cos B cos G
sin B sin G
1 _ . cos B + cos C cos A
cos 1) C0S sin G sin A
1 cos G + cos A cos B
> = cos c = .—.—.—„
cos c sin A sin B
where A, B, C are real positive angles each <£7r: first, if A + B + G > tt, then a, b, c
are real positive angles each less than r (this is in fact the case of a real acute-
angled spherical triangle), but a, b', c are pure imaginarles of the form pi, qi, ri
(where p', q\ r' are real positive quantities; and secondly, if A + B + G < tt, then a, b, c
are pure imaginaries of the form pi, qi, ri (where p, q, r are real positive quantities),
but a', b', c' are real positive angles each less than ^7r. Hence assuming A + B + G <ir
and writing ai, bi, ci in place of a, b, c, the system is
1 . cos A + cos B cos C
. = cos ai = .—„ .—~
cos a sin B sin C
1
cos V
cos bi =
cos B + cos G cos A
sin C sin A
1
cos c'
= COS Cl =
cos C + cos A cos B
sin A sin B