PROBLEMS AND SOLUTIONS.
574
[383
which is the required equation; or, transforming to the original axes, we have x + iy — X,
x — iy = F, &c., and therefore XY = x 2 + y' 2 ; and the equation becomes
x 2 + y 2 4-1 , x + iy
x — iy
= 0,
+ «2 + i (ßi + ß 2 ), (cq + ißß (a2 + î/3 2 ), 1
a 3 + a 4 + i (ß 3 + ß 4 \ (a 3 + iß 3 ) (a 4 + iß 4 ), 1
which is the equation of the circle through the two pairs of antifocal points.
{Note. The second form of the equation of the circle may be otherwise deduced
from the first, without expanding the determinants, by the following method:
XY,
Y,
Z,
1
=
ZF+1,
Y,
X,
1
A i,
1,
djdo,
d 2
-di + A 2 ,
1 ,
-di-d 2 ,
A 2
d 2 ,
1,
d]d 2 ,
A l
A 1 + d 2 ,
1,
d-l-do,
A4
dg,
1,
-d.3-d.4i
d-4
A 3 + d 4 ,
1,
d 3 d 4 ,
d-4
ZF+1, F, Z, 1
= (d4-d 2 )
ZF+1, Z, F
dj + d 2 , 1, did,, d 2
dj + d 2 , d. 4 d 2 , 1
0, 0, o, dj - d 2
d 3 + d 4 , d 3 A 4 , 1
d 3 + A 4 , 1, d 3 d 4 , d 4
therefore
XY+ 1,
Ai + d 2 ,
A 3 + d 4 ,
X,
did 2 ,
d 3 d 4 ,
Ed. [W. J. M.]}
[Vol. II. pp. 22—24.]
1513. (Proposed by the Rev. J. Blissard, B.A.)—Prove the following formulas
(x — 1) (x — 2).. (x — n)
(1)
X (x + 1) .. (x + n — 1)
l+(-\nJ n 1 n(n 2 -P) 1 n(n 2 — l 2 )(n 2 — 2 2 )
1+ ' ' > 'x P ' x+l + P. 2 2 'x+2