Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

[383 
383] 
PROBLEMS AND SOLUTIONS. 
603 
, G and 
through 
it. The 
se that, 
»ectively 
= 0, 
len the 
= 0, 
d their 
which 
agonale 
! cubic 
ternate 
pposite 
! third 
тс) and 
{x (y 3 — z 3 ), y(z 3 —x 3 ), z(x 3 — y 3 )]. The coordinates of the same point may be otherwise 
found by a direct investigation, as follows: Write 
x 2 : y 2 : z 2 = x (y 3 — z 3 ) : у (z 3 — ж 3 ) : z (x 3 — y 3 ); x x : y x : z x — у : z : x. 
If in the equation of the curve we substitute for x, y, z, the values ux x + vx 2 , 
uy x + vy 2 , uz x + vz. 2 , we find 
и [x x 2 x 2 + y 2 y 2 + z x % + 21 {x,y x z x + y 2 z x x x + z 2 x x y x )] 
+ v [x x xf + y x yi + z x z 2 2 + 21 (x x y,z 2 + y x z 2 x 2 + z x x 2 y$\ = 0, 
say uP 4- vQ — 0 ; we may therefore write u = Q, v = — P, and the coordinates of the 
third point are Qx x — Px 2 , Qy x — Py 2 , Qz x — Pz 2 . Now 
Qx x - Px, = y x y 2 (x x y 2 - x 2 y x ) + z x z 2 (x x z 2 - x 2 z x ) + 21 (x x -y 2 z, - x.?y x z x ) 
= yz (z 3 — oc 3 ) \y 2 (z 3 — x 3 ) — zx (y 3 — z 3 )} 
+ zx(x 3 — y 3 ) {yz (X 3 — y 3 ) — X 2 (y 3 — z 3 )} 
+ 21 [y 2 . yz . (z 3 — cc 3 ) (x 3 — y 3 ) — x 2 (y 3 — z 3 ) 2 zx]. 
= (ос?у fi + y 3 z 6 + z 3 x s — 3a?y 3 z 3 ') z 
+ xyz ( x (i + y n + z c ‘ — y 3 z 3 — z 3 x 3 — a?y 3 ) z 
— 21 (x s y 3 + y 6 z 3 + z e P — Sx 3 y 3 z 3 ) z; 
so that we have Qx x — Px 2 — Hz ; and in like manner Qy x — Py 2 = Tlx, Qz x — Pz 2 = IIу; 
and therefore Qx x — Px 2 : Qy x — Qy 2 : Qz x — Pz 2 = z : x : у, which proves the theorem. 
I consider in like manner the following question; viz., if (y, x, z) be joined with 
the tangential of (x, y, z); to find the third point of intersection. We have here 
x 2 : y 2 : z 2 = x(y 3 — z 3 ) : у (z 3 — a?) : z (x 3 — y 3 ); x x : y x : z x = y : x z\ 
and P, Q as before ; and the coordinates of the third point are 
Qxi Px 2 : Qy x Py 2 : Qz x Pz 2 ] 
also 
Qx x — Px 2 — xу (z 3 — x 3 ) [y 2 (z 3 — X s )— ж 2 (y 3 — z 3 )] 
+ Z 2 (X 3 — y 3 ) {yz {x 3 — y 3 ) — zx (y 3 — z 3 )] 
+ 21 {y 3 z (z 3 — x 3 ) (ж 3 — у 3 ) — x 2 {у 3 — z 3 ) 2 zx], 
= x {у 3 {z 3 — x 3 ) 2 — z 3 (x 3 — y 3 ) (y 3 — z 3 )] 
+ у {z 3 (ж 3 — у 3 ) 2 — ж 3 (у 3 — z 3 ) (z 3 — ж 3 )} 
+ 2Iz {у 3 (z 3 — ж 3 ) (ж 3 — у 3 ) — ж 3 (у 3 — z 3 ) 2 ], 
that is Qx x — Рх 2 = (ж + у — 21 z) (x 3 z r ' + у 3 ж 6 + z 3 y e — 3x?y 3 z 3 ); 
similarly Qy x — Py 2 = (ж + у — 2 Iz) (y 3 z 3 + y 6 z 3 + z 3 x 6 — 3oc?y 3 z 3 ); 
also Qz x — Pz 2 ={x + у — 2lz) (ж 6 + у 6 + z 6 — y 3 z 3 — Py 3 ) xyz ; 
76—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.