Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

[383 
383] 
PROBLEMS AND SOLUTIONS. 
605 
y) 
nstruct, 
b that 
hat an 
8, and 
square, 
tieorem 
erefore 
I. The 
n : the 
rishes.} 
of the 
meters 
Solution by Professor Cayley. 
Let the given line be taken for the axis of z; the axes of x, y being any 
rectangular axes in the plane perpendicular thereto ; the equations of the given line 
are therefore (« = 0, y = 0). Take (a,, ft, Yi), (a,, ft, y 9 ), («*, ft, y 3 ), («4, ft, 74) for the 
coordinates of the points A, B, G, D respectively; and (0, 0, eft (0, 0, c 2 ), (0, 0, eft (0, 0, c 4 ) 
for the coordinates of the points a, b, c, d respectively. Then, to determine Cj, the 
equation of the plane BCD is 
«, y , 
•2 , 
1 
a.,, ft, 
72, 
1 
«3, ft, 
73, 
1 
®4 , ft, 
74, 
1 
and cutting this by the line x = 0, y = 0, we have 
^ 0 , 0 , Ci, 
«2, ft, 72, 
«8» ft, 73, 
! a 4 , ft, 74, 
with similar equations for c 2 , c 3 , c 4 respectively. The four equations may be united into 
the single equation 
CiPit 
1, 
«1, 
ft 
= 
pi, 
«1, 
ft, 
7i 1 
c,p,, 
1, 
«2, 
/3. 
P-2, 
«2, 
ft, 
72 ; 
\ C 3 p 3 , 
! 
1, 
«3, 
ft 
p3, 
«3, 
ft, 
73 
Cipi, 
1, 
«4, 
ft 
Pi, 
«4, 
ft, 
74 
where p 1} p 2 , p 3 , pi are arbitrary multipliers. Hence, writing successively (p 1 , p. 2 , p 3 , p 4 ) 
= (1, 1, 1, 1) and (pi, p 2 , p 3 , pi) = ( 7 i, 72, 73, 74), we have first 
that is 
^1) 
1, 
«1, 
ft 
= 
1, 
«1, 
ft, 
7i 
C*> 
1, 
«8, 
ft 
1, 
«2, 
ft, 
72 
C.3) 
1, 
«8, 
/ft 
1, 
«3, 
ft, 
73 
C4) 
1, 
«4, 
ft 
1, 
Ä4, 
ft, 
74 
1, 
«1, 
ft, 
Cl 
+ 7i 
= 0 
1, 
«2,- 
ft 
c 2 
+ 7.4 
1, 
«3, 
ft 
C3 
+ 73 
1, 
*4, 
ft, 
C4 
+ 74
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.