398]
we find
and thence
that is
AND SEXTIC SURFACE CONNECTED THEREWITH.
t*v= A' 2 - fx' 2 — v' 2 + 2/a V,
v\=- A' 2 + /¿' 2 - v 2 + 2v'X',
A/x = A 2 — ¡x 1 + v + 2\'fx,
HV + I/A + A/a = - (V 2 + /a' 2 + v ' 2 - 2fi'v' - 2i/V - 2AV), = 0,
93
^ + i + i=o,
K fl v
the relation which connects the new constants A, ¡x, v. Moreover
yz —xw = 4 (?/'/ — ¿c V),
zx —yw = 4 {z'x - y'w'),
xy — zw = 4 («i/' — /w'),
3w 2 — x 2 — y 2 — z 2 = 8 (yV + z'x' + x'y + a/w' + y'w' + zV),
2
and writing for greater convenience 0 = the equations are transformed into
0\x = xw — yz,
0/iy — yw — zx,
0vz = zw — xy,
20 (A + ¡x + v) w = Sw 2 — x 2 — y 2 — z 2 ,
where
1 1 , 1 A
- H h - — 0,
A /x v
viz. these equations, eliminating 0, give the equations of the nodal curve.
From the first three equations eliminating 0, we deduce
yzw (fx — v) = x (fxy 2 — vz 2 ),
zxw {v — A) = y (vz 2 — \x 2 ),
xyw (A — ¡x) = z (\x 2 - fxy 2 ),
or, as these equations may be written,
x 2 (fxy 2 - vz 2 ) y 2 (vz 2 - \x 2 ) z 2 (Xr 2 - fxy 2 )
'°"V=-JZr~ = ~^=A A-/a ’
which equations, from the mode in which they are obtained, are it is clear equivalent
to two equations only. Using the fourth equation, and eliminating 0 by substituting
therein for 0\, 0fx, 0v their values from the first three equations, we find
2 w 2 (S w-^- -- a f) = 3w 2 -x 2 -y 2 -z 2 ,
\ X y Z J