398] and sextic surface connected therewith. 97
and we have
X = 2(^ - S)(7 - 8)( 7 - a) (a - /3),
/x = 2 (7 — 8) (a - 8) (a-/3) (/3- 7 ),
v = 2 (a - 8) (Ji - 8) (/3 - 7) (7 - a ),
whence X/xx» = 8X'/xV.
Hence finally X, /x, y denoting as just mentioned, and therefore satisfying
- + - + - = 0, the equation of the developable is
X /x v
Xpv [iv 2 — w (x 2 + y 2 + z 2 ) + 2xyz\ 2 + 108 {(X + /x + v) w 2 — Xa 2 — /xy 2 — vz 2 } 3 = 0
(say this is X/jlvT 2 + 108$ 3 = 0), and this surface (which has obviously the cuspidal curve
S = 0, T — 0) has also the nodal curve
wxyz =
x 1 (/xy 2 — i^ 2 ) _ y' 1 (vz 2 — Xx 2 ) _ z 2 (X« 2 — /xy 2 )
y — v v — X X — fM
I will show cl 'posteriori that this is actually a nodal curve on the surface. Intro
ducing an arbitrary parameter 0, the equations of the curve may be written lit supra
0Xx = xw — yz,
dfiy = yw — zx,
Ovz =zw — xy,
20 (X + /x + v) w — Sw 2 — x 2 — y 2 — z 2 ,
and we have thence, as before,
2w Uw _ _ " _ Sfl -*.
\ X y z) °
Hence
2$ _ ^ tL>2 — x ‘ — y* — z? 2w (x 2 -f y 2 + z 2 ) + Qxyz
(X + /jl + v) iv — Xx 2 — /xy 2 — vz 2
_ 3 w s —w(x 2 +y 2 + z 2 )
(X + /x + v) w 2 *
_ 3 [w 2 — w (x 2 + y 2 + z 2 ) + 2 xyz]
(X + /x + v) w 2 — Xx 2 — /xy 2 — vz 2 ’
_ 3 T
~ S •
Hence writing
0 (— 2Xx) — (- 2wx + 2yz) = 0,
0 (— 2/xy) — (- 2 wy + 2 zx) =0,
6 (— 2vz) - (- 2m -I- 2xy) = 0,
0.2(X + /x+i/)w- (3w 2 -oc 2 -y 2 — z 2 ) = 0,
C. VI.
13