Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

138 
REPRODUCTION OF EULER’S MEMOIR OF 1758 
[404 
and substituting these values in the differential equation 
dv L cos l M cos m + N cos n 
du p q r 
the equation to be integrated becomes 
^ (L 2 A 2 q 2 r 2 + M 2 B 2 r 2 p 2 + N 2 G 2 p 2 q 2 ) = LMN3) (Ap 2 + Bq 2 + Or 2 ) - LMNv {A 2 p 2 + B 2 q 2 + CV) 
el'll 
4- (L 2 Aq 2 r 2 + M 2 Br 2 p 2 + N 2 Cp 2 q 2 ). 
pqr 
Now substituting for p, q, r their values, we have 
L 2 A 2 q 2 r 2 + M 2 B 2 r 2 p 2 + N 2 C 2 p 2 q 2 = ЕА 2 Ж + М 2 В 2 Ш + №С 2 Ш - 2LMNu (2U 2 + 53Б 2 + SO 2 ), 
L 2 Aq 2 r 2 +M 2 Br 2 p 2 + N 2 Gp 2 q 2 =Ь 2 АШ + М 2 ВШ +№СШ -2LMNu{%A +ЪВ + SO), 
p 2 + q 2 + t 2 = 21 +53 + S + 2 (L + M + N) u, 
Ap 2 + Bq 2 + Or 2 = 2Ы + 53J3 +SO, 
A 2 p 2 + B 2 q 2 + G 2 r 2 = 2L4 2 + 53 B 2 + SO 2 : 
and writing for shortness 
21+ 53+ & = E, 
2IA+ 53Я + £C = F, 
2IA 2 + 53Б 2 + S0 2 =0, 
L 2 A 53S + М 2 ВШ + wem = H, 
1AA 2 53S + M 2 B 2 m + iV 2 0 2 2l53 = K, 
where К = EG — F 2 , substituting these values and observing that 
L + M+N = -LMN, 
the radical of the formula becomes 
V{(••)} = \! (K-2LMNGu + 2WLMNu - WE + ZSFv - Gv J ), 
and the differential equation becomes 
^ (K - 2 LMNGu) = LMN'SF-LMNGv + 2 LMNFu) V{(-)}, 
which can be reduced to the form 
Kdv — LMNFQdu — 2LMNGudv + LMNGvdu _ Hdu — 2LMNFudu 
v [K - <S) 2 E + 2LMN(2) 2 - G) и + 2<5>Fu - Gv 2 } ~ V{(2Lu + 21) (2Mu + 53) (2Nu + S){ '
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.