Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

404] 
the second term is 
ON THE ROTATION OF A SOLID BODY. 
143 
cos A cot l (q cos n — r cos on) 
q 
+ — cos p cot m (r cos l — p cos n ) 
r 
+ — cos v cot n (p cos on —q cos l ), 
and the third term is 
p • 
+ ~ sin A cosec l ( q cos m + r cos n ) 
q . 
+ ^sm/i cosec on (r cos n +p cos l) 
r . 
H— sin v cosec n (p cos l + q cos m). 
Hence the second and third terms together are 
pq ( „ cos l cos n cos m cos n . cos m . cos l 
= - cos A :—: cos a —7 1- sm A —— r + sin u, 
(o \ sm l sm m sm l sin m 
pq j— cos A sin n cos (v — A) + sin A sin n sin (v — A) 
w }+ cos p sin n cos (p — v) + sin p sin n sin (p, — v ) 
pq . (— cos A cos (v — A) + sin A sin (v — A)| „ 
(o (+ cos p cos (p — v) 4- sm p sm (p — v)J 
pq . 
— sm n 
w 
cos {A + (v — A)}) 
[+ COs {p-(p- !/)}) 
+ &c., 
= — sin n (— cos v + cos v) + &c., = 0 ; 
w 
we have therefore 
cos j dj cos (f) — sin j sin (p dcf) 
= — sin a da sin l cos A — sin /3 d/3 sin m cos p — sin 7 dy sin n cos v, 
= d — . sin l cos A + d - . sin m cos p + d — . sin n sin v 
(O O) co 
= + — (sin l cos A dp + sin on cos pdq + sin n cos v do') 
CO 
- (sin l cos A p + sin m cos pq + sin n cos v r) 
co~ 
= — cot j cos <f> d - — sin j sin <jf> dcf). 
+ &c.,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.