404]
the second term is
ON THE ROTATION OF A SOLID BODY.
143
cos A cot l (q cos n — r cos on)
q
+ — cos p cot m (r cos l — p cos n )
r
+ — cos v cot n (p cos on —q cos l ),
and the third term is
p •
+ ~ sin A cosec l ( q cos m + r cos n )
q .
+ ^sm/i cosec on (r cos n +p cos l)
r .
H— sin v cosec n (p cos l + q cos m).
Hence the second and third terms together are
pq ( „ cos l cos n cos m cos n . cos m . cos l
= - cos A :—: cos a —7 1- sm A —— r + sin u,
(o \ sm l sm m sm l sin m
pq j— cos A sin n cos (v — A) + sin A sin n sin (v — A)
w }+ cos p sin n cos (p — v) + sin p sin n sin (p, — v )
pq . (— cos A cos (v — A) + sin A sin (v — A)| „
(o (+ cos p cos (p — v) 4- sm p sm (p — v)J
pq .
— sm n
w
cos {A + (v — A)})
[+ COs {p-(p- !/)})
+ &c.,
= — sin n (— cos v + cos v) + &c., = 0 ;
w
we have therefore
cos j dj cos (f) — sin j sin (p dcf)
= — sin a da sin l cos A — sin /3 d/3 sin m cos p — sin 7 dy sin n cos v,
= d — . sin l cos A + d - . sin m cos p + d — . sin n sin v
(O O) co
= + — (sin l cos A dp + sin on cos pdq + sin n cos v do')
CO
- (sin l cos A p + sin m cos pq + sin n cos v r)
co~
= — cot j cos <f> d - — sin j sin <jf> dcf).
+ &c.,