168
AN EIGHTH MEMOIR ON QUANTICS.
[405
Table No. 86 [= leading coefficient of >8'].
a 4 ce/ 3
+ 9
a 3 be/ 3
—
9
ddr’df 3
+
120
ab 4 cf 3
576
b s / s
4-
192
a 4 d?/ 3
+ 21
aPbcdf 3
-
162
aW/ 2
-
21
ab 4 def 2
4-
672
dee/ 2
—
1440
a*def 2
- 78
a 3 bce 2 / 2
4-
99
aWf 3
+
486
ab 4 e 3 /
-
359
dd 4 / 2
-
192
a 4 e 4 f
+ 48
a'bd?ef 2
4-
309
orlrcdef-
2160
alfde/ 1
4-
3456
b 5 de 2 /
-
1080
a s bde 3 f
4-
12
ddfce’f
+
1023
aVccPf*
—
864
Jfe 4
4-
2025
d } be 5
-
240
a 2 b 2 d 3 / 2
+
120
ab 3 cde 2 /
4-
2094
b 4 dd/ 2
+
2592
a 3 c 3 / 3
-
81
a?bWf
—
1053
ab s ce 4
—
3915
b 4 de/
4-
3546
d 3 dde/ 2
+
1026
a 2 b 2 de 4
+
1314
ab s d 3 e/
4-
528
b 4 cd 2 e/
4-
5280
a 3 c 2 e 3 /
-
768
a 2 bde/ 2
-
1863
ab 3 d 2 e 3
—
45
b 4 cdd
—
13500
a 3 cd 3 f 2
-
738
a 2 bc 2 d/ 2
+
2538
ab 2 dd/ 2
—
2592
b 4 d 4 f
—
4800
d 3 cd?e 2 /
-
564
a 2 bc 2 de 2 /
2340
ab 2 dd/
—
9747
b 4 d 3 e 2
4-
7800
cdcde 4
4-
1056
cdbc-e 4
+
672
ab 2 dd 2 e/
—
8496
b 3 e 4 / 2
—
648
a''d 4 pf
+
756
a 2 bcd 3 e/
4-
2820
ab 2 c 2 de 3
4-
26610
b 3 c"’de/
—
14040
cdcPe 3
-
696
aPbcdPe 3
—
7812
ab 2 cdf
4-
8544
b 3 dd
+
3075
a?bd?f
-
3024
ab 2 cd 4 e
-
16650
b 3 e 2 d/
4-
9120
a 2 bd 4 e-
+
4572
ab 2 d 5 e
4-
720
b 3 c 2 d 2 e 2
4-
16350
a?c 4 df 2
-
324
abcf 2
4-
972
dcd 4 e
—
19200
d 2 de 2 /
+
3888
abc 4 def
4-
24048
b 3 d ti
4800
a 2 dd 2 e/
—
8748
abc 4 e 3
—
4464
b 2 de/
4-
4860
d 2 ddd
—
4800
abdd 3 /
—
15984
b 2 c 4 d 2 /
—
3240
a 2 c 2 d 4 /
+
4248
abdcfte 2
-
30108
b 2 c*de 2
—
8100
d 2 c 2 d 3 e 2
+
14520
abdd 4 e
4-
35088
ddd'e
4-
9000
urcd 5 e
—
11448
abed B
—
8640
bdd 8
—
2400
a 2 cP
+
2592
adef
—
7776
ac 5 d 2 f
adde 2
4-
5184
4-
12960
ac 4 d 3 e
—
14400
add s
4-
3840
1+
00
+
3258
+
41253
4
124716
+
68640
[The values thus are cf> s (x, y) = 10 BJ — 1ODG ; (x, y) = <8'.]
289. The equation in z is of the form
21
23
<S X
*' + I>*‘ + i z "' + I) z + D =0 -
where Z> is the discriminant of the quintic and 21, 23, (5, X denote rational and
integral functions of the coefficients (a, b, c, d, e, /). And the covariants <^>j 0*. y).
<f). 2 (x, y), <f> 3 (x, y), (f> 4 (x, y) having the values given to them above, the actual value
of 21 is obtained as a quadric function of the indeterminates (t, u, v, w), viz. this is
= [A* 2 - QBBtv - D (A - 10 AB) v-] + D [- Bu 2 + 2D,uw + 9 (BD - 10 A A) w 2 ],
where A = 25AB + 16(7, these quantities, and the quantity A r (= A 2 — 10ABD 1 + 9B-D)
afterwards spoken of, being in the notation of the present Memoir as follows:
A = J
B = -K
G = 9 L + JK
1) = D
A = 9(1OL-JK),
N = 1152(18 L--JKL
(= G),
(=-Q),
(=-9 U+GQ),
(= O'),