Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

168 
AN EIGHTH MEMOIR ON QUANTICS. 
[405 
Table No. 86 [= leading coefficient of >8']. 
a 4 ce/ 3 
+ 9 
a 3 be/ 3 
— 
9 
ddr’df 3 
+ 
120 
ab 4 cf 3 
576 
b s / s 
4- 
192 
a 4 d?/ 3 
+ 21 
aPbcdf 3 
- 
162 
aW/ 2 
- 
21 
ab 4 def 2 
4- 
672 
dee/ 2 
— 
1440 
a*def 2 
- 78 
a 3 bce 2 / 2 
4- 
99 
aWf 3 
+ 
486 
ab 4 e 3 / 
- 
359 
dd 4 / 2 
- 
192 
a 4 e 4 f 
+ 48 
a'bd?ef 2 
4- 
309 
orlrcdef- 
2160 
alfde/ 1 
4- 
3456 
b 5 de 2 / 
- 
1080 
a s bde 3 f 
4- 
12 
ddfce’f 
+ 
1023 
aVccPf* 
— 
864 
Jfe 4 
4- 
2025 
d } be 5 
- 
240 
a 2 b 2 d 3 / 2 
+ 
120 
ab 3 cde 2 / 
4- 
2094 
b 4 dd/ 2 
+ 
2592 
a 3 c 3 / 3 
- 
81 
a?bWf 
— 
1053 
ab s ce 4 
— 
3915 
b 4 de/ 
4- 
3546 
d 3 dde/ 2 
+ 
1026 
a 2 b 2 de 4 
+ 
1314 
ab s d 3 e/ 
4- 
528 
b 4 cd 2 e/ 
4- 
5280 
a 3 c 2 e 3 / 
- 
768 
a 2 bde/ 2 
- 
1863 
ab 3 d 2 e 3 
— 
45 
b 4 cdd 
— 
13500 
a 3 cd 3 f 2 
- 
738 
a 2 bc 2 d/ 2 
+ 
2538 
ab 2 dd/ 2 
— 
2592 
b 4 d 4 f 
— 
4800 
d 3 cd?e 2 / 
- 
564 
a 2 bc 2 de 2 / 
2340 
ab 2 dd/ 
— 
9747 
b 4 d 3 e 2 
4- 
7800 
cdcde 4 
4- 
1056 
cdbc-e 4 
+ 
672 
ab 2 dd 2 e/ 
— 
8496 
b 3 e 4 / 2 
— 
648 
a''d 4 pf 
+ 
756 
a 2 bcd 3 e/ 
4- 
2820 
ab 2 c 2 de 3 
4- 
26610 
b 3 c"’de/ 
— 
14040 
cdcPe 3 
- 
696 
aPbcdPe 3 
— 
7812 
ab 2 cdf 
4- 
8544 
b 3 dd 
+ 
3075 
a?bd?f 
- 
3024 
ab 2 cd 4 e 
- 
16650 
b 3 e 2 d/ 
4- 
9120 
a 2 bd 4 e- 
+ 
4572 
ab 2 d 5 e 
4- 
720 
b 3 c 2 d 2 e 2 
4- 
16350 
a?c 4 df 2 
- 
324 
abcf 2 
4- 
972 
dcd 4 e 
— 
19200 
d 2 de 2 / 
+ 
3888 
abc 4 def 
4- 
24048 
b 3 d ti 
4800 
a 2 dd 2 e/ 
— 
8748 
abc 4 e 3 
— 
4464 
b 2 de/ 
4- 
4860 
d 2 ddd 
— 
4800 
abdd 3 / 
— 
15984 
b 2 c 4 d 2 / 
— 
3240 
a 2 c 2 d 4 / 
+ 
4248 
abdcfte 2 
- 
30108 
b 2 c*de 2 
— 
8100 
d 2 c 2 d 3 e 2 
+ 
14520 
abdd 4 e 
4- 
35088 
ddd'e 
4- 
9000 
urcd 5 e 
— 
11448 
abed B 
— 
8640 
bdd 8 
— 
2400 
a 2 cP 
+ 
2592 
adef 
— 
7776 
ac 5 d 2 f 
adde 2 
4- 
5184 
4- 
12960 
ac 4 d 3 e 
— 
14400 
add s 
4- 
3840 
1+ 
00 
+ 
3258 
+ 
41253 
4 
124716 
+ 
68640 
[The values thus are cf> s (x, y) = 10 BJ — 1ODG ; (x, y) = <8'.] 
289. The equation in z is of the form 
21 
23 
<S X 
*' + I>*‘ + i z "' + I) z + D =0 - 
where Z> is the discriminant of the quintic and 21, 23, (5, X denote rational and 
integral functions of the coefficients (a, b, c, d, e, /). And the covariants <^>j 0*. y). 
<f). 2 (x, y), <f> 3 (x, y), (f> 4 (x, y) having the values given to them above, the actual value 
of 21 is obtained as a quadric function of the indeterminates (t, u, v, w), viz. this is 
= [A* 2 - QBBtv - D (A - 10 AB) v-] + D [- Bu 2 + 2D,uw + 9 (BD - 10 A A) w 2 ], 
where A = 25AB + 16(7, these quantities, and the quantity A r (= A 2 — 10ABD 1 + 9B-D) 
afterwards spoken of, being in the notation of the present Memoir as follows: 
A = J 
B = -K 
G = 9 L + JK 
1) = D 
A = 9(1OL-JK), 
N = 1152(18 L--JKL 
(= G), 
(=-Q), 
(=-9 U+GQ), 
(= O'),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.