180
AN EIGHTH MEMOIR ON QU ANTICS.
[405
where, developing M. Hermite’s expressions,
72 L =
24 J/=
2477 -
24JT =
A 7 B
+ 1
A 4 B - 1
dÆ/ +
1
1+ 1
A*C I 2
+ 1
A 3 C - 1
Cl +
5
A 6 JP
+ 6
A 2 B 2 - 3
A 4 BC
- 24
d,SO + 12
A 3 B 2
+ 9
C 2 + 24
A 3 C 2
- 39
A 2 B 2 C
+ 9
ABC 2
+ 108
C 3
+ 72
and substituting these values, we find
36a
36b =
36c =
36d =
36e
=
36f=
ylVi +
1
A*BI - 3
A*B +
1
ABI -
3
A°B
+ 1
BI - 3
A 6 C 2 +
1
AGI - 24
A 5 C +
1
Cl
12
A 4 C
+ 1
A 5 B 2 +
6
A 4 B 2 +
6
A 3 B 2
+ 6
A 4 BC -
39
A 3 BC -
27
A 2 BC
- 15
A 3 B 3 +
9
A 2 B 3 +
9
AB 3
+ 9
A 3 C 2 -
54
A 2 C 2 -
42
AC 2
- 30
A 2 BC -
36
BC 2 +
144
B 2 C
+ 36
ABC 2 +
288
C 3 +
1152
I have not thought it worth while to make in these formulae the substitutions A—J,
B = — K, C=9L+JK, which would give the expressions for (a, b, c, d, e, f) in terms
of J, K, L.
314. Substituting for (x, y) their values in terms of (X,
(a, b, c, d, e, f^x, y) 5
i Q'
= (a, b, c, d, e, /J —^ +
1 i-F
X +
w-,A z +
2 VO
1
and by what precedes
this gives
and thence
2VOVJ. * ‘ 2VO
= (X, fi, v, v, \x!> X'\X, Yf suppose,
ax 2 + ßxy + 7y* = "J A X Y ;
ddy- — ßdyd x + yd x 2 = — V Ad x d y ,
Y), we have
h~ qU ) 7 ‘
■f Ä + l^Ä)Y
(ad,/ — ßdyd x + yd x 2 y (a, b, c, d, e, f y)°
= Ad/dy (X, ya, v, y!, v, X'\X, Y) 5
— 120A (vX + v Y) ;