406] ON THE CURVES WHICH SATISFY GIVEN CONDITIONS. 225
(1*1, 1)
(.•.)= n + 2m — 3,
( :/) = 2n + 4m — 6,
( • // ) = 4n + 4m — 6,
(///) = 4n + 2m —3;
(1*1, 2)
( : )= «-4,
( • / ) = 2a — 8,
( // ) = 2a — 4;
(1*1, 1, 1)
( : ) = 2m 2 +2mn + £// 2 — 8m — f/i + 13 — fa,
( • / ) = 2m 2 + 4//m + // 2 — 8m — 7/i + 18 - 3a,
( // ) = m 2 + 4mw 4 2n 2 — 4m — 8?i + 12 - 3a;
(1/d, 3)
( • ) = — 4m — 3/i — 5 + 3a,
( / ) = — 8m — 8n — 6 + 6a;
(Ld, 1, 2)
( • )= 4m + 8?? + 44 + a(2m + n— 17),
( / ) = 20m+ 16w + 42 +a (2m+2?i-27);
(1*1,1,1,1)
( • ) =|m s +2m 2 /i+ m/i 2 +|w 3 —5m 2 — 9mn—2n 2 +^ j m+^-n—57 + a(— 3m—|/i+^.) r
( / ) =^ 8 +2m 2 w+2m/i 2 +^/i 3 —fm 2 —10mw—4n 2 —-^m+^/i—54+a(—3m—3w+-^)r
(2/d)
( .••) = !,
( :/) = 2,
(•//) = 2,
(///) = i;
(2d, 1)
( : ) = 2m + n—o,
( • / ) = 2m + 2w — 6,
( // )= m+2w — 4;
(2/d, 2)
( • ) = «-7,
( / ) = «-6;
c. VI.
20