406]
ON THE CURVES WHICH SATISFY OIVEN CONDITIONS.
229
(a, b,
[2d (a + 1) (b + 1) (c + 1)
+ [ted. (a + 1) (b + 1)
' [rm — a — l] 3 >
+ [rm — a — 2] 2 a! [D] 1
+ [rm — a — 3] 1 (3' [D] 2
f [rm — a. — 2] 2 ]
; + [rm — a — 3] 1 a" [D] 1 y
[ +
1W 1
]M 2
— [tbcd(a + 1)
+ abed
j' [rm — a — 3] 1 ] ] [k] s
1+ «"'[£]■}
M‘,
c, d, e) = (a + 1) (b + 1) (c + 1) (d + 1) (e + 1) ( [rm — a ] 5
-pfl(o + l)(6 + l)(c+l)(d + l)
4- [tde (a + 1) (b + 1) (c + 1)
— [tede (a + 1) (b + 1)
+ [tbede (a + 1)
1 +
[rm
— CL
- I] 4 a
W
I +
[rm
— a
— 2] 3 /3
[Df
+
[rm
— a
-3? 7
[Df
+
[rm
— a
— 4] 1 S
№
1 +
e
[Df)
f
[rm
— a
-l] 4
JM 1
1 +
[rm
— a
- 2] 3 a'
№
* +
[rm
— a
- 3] 2 /3'
№
,
+ [rm
— a
- 4] 1 7'
[i)] 3
, +
S'
[D]\
f
[rm
— a
- 2] 3
>
JW 2
i +
[rm
— a
- 3] 2 a"
[Z)] x
+
[rm
— a
-4 J/3"
[X»] 2
1 +
y"
[D]>j
(
[rm
— a
— 3] 2
'
] M 3
+
[rm
- a
-^a!"
№
1 +
/3"'
m)
f
[rm
- a
- 4] 1
l
][«] 4
\+
a'"
ml
M 5 -
abede .