406]
ON THE CURVES WHICH SATISFY GIVEN CONDITIONS.
233
la, b, c, <?] = —(M + l)(& + l)(c + l)(Æ+l)(a + l)(a + 2)(a + 3)
-(<* + l)(6 + l)( c +l)(d+l)
.. rrn
#0 + 1)0 + 2) (a + 3)
-/3 0 + 2) (a + 3)
j ~ y 0 4" 3)
[-23
d (a + 1) (b + 1) (c + 1) (d + 1) (a + 2) (a + 3) ^
cd(c + d+ 2) (a-f 1) (b + 1) (a + 3)
+ 22 3cd (6 + c 4* d 4" 3) (a 4* 1)
— 6 abed
where a = a + b+c + d, ..8 = abed.
. I>, b, c, d, e]= (a 4-1)(6 + 1)(c4-1) (c? 4 1)(e + 1) (a 4 1)(a + 2)(a + 3)(a + 4)
4- (a + 1) (b + 1) (c + 1) (d + 1) (e + 1)
+ 2
- 2
' a
(a 4-1) (a 4-2) (a + 3) 0 + 4)
- /3
0 + 2)0 + 3) 0+4)
“ 7
o + 3) 0 + 4)
— 23
0 + 4)
„ — 6e
rm
A
+ ( — 0 + 1) (b + 1) (c + 1) (d 4-1) (e + 1) (a + 2) (a 4- 3) (a 4- 4) "j k,
+ 2c?e (d + e+ 2)(a + l)(& + 1) (c + 1) (a+3)(a + 4)j
- 2lede (c 4 d 4 e 4 3) (a 4 1) (b 4-1)
+ dXbcde (b + c + d + e + 4) (a + 1)
— 24abode
where a = a + b + c + d+e, /3 = &c.,... e = abode.
(«4-4)
83. The complete functions (a), (a, b), (a, b, c), &c. may be expressed by means of
the linear terms [a], [a, 6], [a, b, c], &c. as follows, viz. we have
(a) = [a],
(a, b) = [a] [6]
+ [a, b],
(a, b, c) = [a] [6] [c]
4- [a] [b, c] + [6] [a, c] + [c] [a, 6]
+ [a, 6, c],
(a, 6, c, d) = [a] [3] [c] [d]
+ 2[a][3][c, d]
+ 2 [a, 3][c, d]
4- 2 [a] [b, c, d]
+ [a, b, c, d\
C. VI.
30