258
ON THE CURVES WHICH SATISFY GIVEN CONDITIONS.
[406
Annex No. 7 (referred to, No. 93).
In connexion Avith De Jonquieres formula, I have been led to consider the following
question.
Given a set of equations :
a
= a
(viz. b = b, c = c,
<fec.),
ab
= ab
(viz. ac = ac.
, &c.,
4-( 11) a. b
\ 4- (11) a.
c,
abc
= abc
+ ( 12)(a. be + b.ac+c.ab)
+ ( 111) a .b . c,
abed = abed
4-( IS)(a. bccl +&c.)
+ ( 22) (ab . cd + &c.)
4-( 112) (a. b. cd 4- <fec.)
4- (1111) a .b .c.d,
and so on indefinitely (where the (•) is used to denote multiplication, and ab, abc, <fec.,
and also ab, abc, «fee. are so many separate and distinct symbols not expressible in
terms of a, b, c «fee., a, b, c «fee.), then we have conversely a set of equations
a
ab
abc
a (viz. b = b, c = c <fec.),
ab /viz. ac = ac &c., and the like in all the subsequent equations’
+ [ 11] a.b \ + [11] a . c,
abc
4 [ 12] (a. be +b.ac4-c.ab)
4- [ 111] a. b . c,
abed = abed
4-[ 13] (a. bed 4-&c.)
4- [ 22] (ab . cd 4- &c.)
4-[ 112] (a. b . cd 4-<fec.)
4-[1111] a.b.c.d,