(fourth equation)
[407
282
(3, 1)
SECOND MEMOIR ON THE
(2)
P = 28
= m 2 — m + 8n + a (
-3);
(2)
Q =2t
= n 2 + 8m — n + oc (
-3);
( 5 )
J [= ¿ (m — 3) supra] ;
(4)
&
II
1
05
= — 3 mn +9 n + a (m
-3).
(4)
(4)
N[= t supra];
(2)
0 [=k supra].
128. I make the following calculations, serving to express in terms of Zeuthen’s
Capitals, the terms in { } contained in the twelve equations respectively.
iV = — 3m + a.
— 3m + a (first equation).
2J = — 6m 2 + 18m + a(2m — 6)
+ R = — 3mn + 9?i + a ( m — 3)
— 6m 2 — 3mn + 18m + 9n + a (3m — 9) (second equation).
6K =
3w 2 + 24m — 3n + a (
-9)
+ L=-
3?i 2
+ 9 n + a (n
-3)
+ 3iY=
- 9 m + a (
3)
+ 20 =
— 6n + a (
2)
15m +a(w
— 7) (third equation).
E =
^m 2 u —
2m 2 —
|mn + 4>i 2 + 2 m — \Qn + a. (
-fn+ 6)
+ F =
m 3
-
4m 2 +
8mw + 3m — 24n + a ( —
3m
+ 9)
+ 20 =
2mn 2 + 16m 2 —
2mn — 8n 2 — 64m + 8n + a ( —
6m
+ 24)
+ D = -
- |??i s
+
'Qni 2
— 18m +a(^m 2 —
\m
+ 6)
+ 3 J =
-
9m 2
+ 27m + a(
3m
- 9)
+ J' =
— 3n 2 + 9 n + a(
n — 3)
—
\m 3
+ \m 2 n + 2 mn 2 +
%g-m 2 +
tymn — 7w 2 — 50m — 23 n + a (|m 2 —
-%n+ 33)