Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

CURVES WHICH SATISFY GIVEN CONDITIONS. 
287 
*(3, 2) = ac (— 9 + a) = « (3 {n — 3) + ac — 1 + 1 ) 
= SL + 2M + 0 
k (3, 1, 1) — k (^m 2 + 2mn + \ri 2 — -C 3 -m — -^-n + 27 — |a) 
= H + 2/ + D' + J' 
Referring to 
(third equation). 
(fourth equation). 
viz. k 1 H = 
/c* 1 .21 = 2mn 
k-'.D' = 
ac" 1 J' = 
— bm + 4 n 
— 6 m — 8n + 24 
— \n + 6 
n — 3 
— —CC 
^m 2 + 2mn + \n? — — ^-n + 27 — |a 
«(2, 3) = k (2/cl, 3) 
ac (2, 2, 1) =/c(2/â, 2, l) + *(n-3) 
= ac (2*1, 2, 1) + /' 
ac(2, 1, 1, 1) = *(2*T, 1, 1, l) + /c.K»-3)(»-4) 
= *(2*I, 1, 1, 1) + D' 
(fifth equation). 
(sixth equation). 
(seventh equation). 
(eighth equation). 
AC ( 1, 4) = AC (1 Acl, 4) + AC 
= ac (1*1, 4) + 0 
*(1,1,3)+ AC (2, 3) + AC 2(4, 1) 
= AC (IacI, 1, 3) + *(2)cI, 3) + *(ra-3) 
+ ac (2*1, 3) 
4- ac (2m + 2)i — 6) 
= ac (IacI, 1, 3) + 2ac(2ac1, 3) + 2R + 8J 
AC (I, 2, 2) = ac (IacI, 2, 2) + * {3 (n-3) + * - 1} 
= ac (IacI, 2, 2) + 3L + 2M 
AC(1, 1, 1, 2) + ac (2, 2, 1) 
= ac(1*1, 1, 1, 2) + AC(2*1, 2, l)+/c{i(n-3)(n~4)+8 + 2w-3m-4} 
+ *(2*1, 2, 1) + * (w 3) 
= *(1*1, 1, 1, 2) + 2* (2*1, 1, 2) 
+ D' + tf+27 + /' 
(ninth equation). 
(tenth equation). 
(eleventh equation).
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.