CURVES WHICH SATISFY GIVEN CONDITIONS.
287
*(3, 2) = ac (— 9 + a) = « (3 {n — 3) + ac — 1 + 1 )
= SL + 2M + 0
k (3, 1, 1) — k (^m 2 + 2mn + \ri 2 — -C 3 -m — -^-n + 27 — |a)
= H + 2/ + D' + J'
Referring to
(third equation).
(fourth equation).
viz. k 1 H =
/c* 1 .21 = 2mn
k-'.D' =
ac" 1 J' =
— bm + 4 n
— 6 m — 8n + 24
— \n + 6
n — 3
— —CC
^m 2 + 2mn + \n? — — ^-n + 27 — |a
«(2, 3) = k (2/cl, 3)
ac (2, 2, 1) =/c(2/â, 2, l) + *(n-3)
= ac (2*1, 2, 1) + /'
ac(2, 1, 1, 1) = *(2*T, 1, 1, l) + /c.K»-3)(»-4)
= *(2*I, 1, 1, 1) + D'
(fifth equation).
(sixth equation).
(seventh equation).
(eighth equation).
AC ( 1, 4) = AC (1 Acl, 4) + AC
= ac (1*1, 4) + 0
*(1,1,3)+ AC (2, 3) + AC 2(4, 1)
= AC (IacI, 1, 3) + *(2)cI, 3) + *(ra-3)
+ ac (2*1, 3)
4- ac (2m + 2)i — 6)
= ac (IacI, 1, 3) + 2ac(2ac1, 3) + 2R + 8J
AC (I, 2, 2) = ac (IacI, 2, 2) + * {3 (n-3) + * - 1}
= ac (IacI, 2, 2) + 3L + 2M
AC(1, 1, 1, 2) + ac (2, 2, 1)
= ac(1*1, 1, 1, 2) + AC(2*1, 2, l)+/c{i(n-3)(n~4)+8 + 2w-3m-4}
+ *(2*1, 2, 1) + * (w 3)
= *(1*1, 1, 1, 2) + 2* (2*1, 1, 2)
+ D' + tf+27 + /'
(ninth equation).
(tenth equation).
(eleventh equation).