Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

302 
ON THE CONDITIONS FOR THE EXISTENCE 
[400 
4. The values of the determinants are 
1234 = 3 x 
1235 = 3 x 
1245 = 
1345 = 3 x 
2345 = 3 x 
a?ce + 1 
a 2 de — 1 
a 2 ë z - 1 
abe 2 — 1 
ace 2 + 1 
o?d 2 - 3 
abce + 4 
abde + 2 
aede + 4 
ad?e — 1 
ab 2 e — 1 
abd 2 + 1 
ac 2 e + 9 
ad 3 — 3 
b 2 e 2 - 3 
abed +14 
ac 2 d — 3 
acd 2 - 9 
b 2 de + 1 
bede + 14 
ac 3 — 9 
b 3 e - 3 
b 2 ce — 9 
6c 2 e — 3 
bd 3 - 8 
b 3 d - 8 
b 2 c 2 + 6 
b 2 cd + 2 
b 2 d 2 + 8 
bed 2 + 2 
c 3 e — 9 
c 2 d 2 + 6 
5. The syzygetic relation with (/, J) is given by means of the identical equation 
= -6I.HU+9J. U, 
y*> 
— 4 xy 3 , 
Qx 2 y 2 , 
- 
¿c 4 
a , 
36 , 
3c , 
d 
b , 
3c , 
3 d , 
e 
a, 
36 , 
3c , 
d , 
b, 
3c , 
3 d , 
e , 
or, as this may be written, 
(1234, 1235, 1245, 1345, 2345$a, y) 4 = - 6/. HU + 9/. TJ, 
where HU is the Hessian of U, 
ac + 1 
ad + 2 
ae + 1 
be + 2 
ce + 1 
b 2 -1 
6c -2 
bd + 2 
cd — 2 
d 2 - 1 
c 2 - 3 
6. That is, we have 
1234 = ( ac- b 2 
4 . 1235 = (2ad- 2bc 
6 . 1245 = ( ae + 2bd 
4 . 1345 = (2be - 2cd 
2345 = ( ce — d 2 
, o$—6/, 9J), 
, 46][- 6/, 9/), 
3c 2 , 6c $-6/, 9/), 
, 4d$- 6/, 9 J), 
, c$-6/, 9J). 
7. The determinants thus vanish if (I, J) = 0, that is, for the root system 31 ; 
they will also vanish without this being so, if only 
SJ \ac — b 2 ad — be ae + 2bd — 3c 2 be — cd ce — d 2 
26 
6c 
2 d 
/SJ \ 
and we may omit the first member Uj =), since if the remaining terms are equal
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.