409] ON THE CONDITIONS FOR THE EXISTENCE &C. 305
12. The conditions for the common [cubic] factor are
a,
46,
6c,
4 d, e
= 0,
a, 46,
6c,
4 d,
e
b,
4c,
6d,
4e, /
6, 4c,
6d,
4e,
/
the several determinants whereof are given in Table No. 27 of my “Third Memoir on
Qualities,” Philosophical Transactions, vol. cxlvi. (1856), pp. 627—647, [144].
13. These determinants must therefore vanish, for (A, B, G) = 0, and also for
(21, 23, ... £, S JOÎ) = 0, that is, they must be syzygetically connected with (A, B, G), and
also with (21, 23, ... 8, 93Ï). The relation to (A, B, G) is in fact given in the Table
appended to Table No. 27, viz. this is
Cx + _Z? x 4-Ax
1234 =
+ 6 a 2
— 12 ab
+ 16 ac — 10 6 2
1235 =
+ 6 ab
- 2 ac - 10 6 2
+ 6 ad
1236 -
- 2 ac + 8 6 2
+ 6 ad — 18 be
- 2 df+ 8 e 2
1245 =
+ 18 ac
— 6 ad — 30 6c
+ 8 ae + 10 bd
1246 =
+ 12 6c
+ 4 ae — 4 bd — 24 c 2
+ 4 be + 8 cd
1345 =
+ 24 ad
— 8 ae — 40 bd
+ 4 af + 20 be
1256 -
— 1 ae + 4 bd + 3 c 2
+ 1 af + 5 be — 18 cd
— 1 bf + 4ce+ 3d 2
2345 =
+ 20 ae + 40 bd — 30 c 2
— 80 be + 20 cd
+ 20 bf+ 40 ce - 30 d 2
1346 =
+ 4 ae + 8 bd + 6 c 2
— 36 cd
+ 4 6/+ 8 ce + 6 rf 2
2346 =
+ 4 af + 20 be
— 8 bf - 4 ce
+ 24 cf
1356 =
+ 4 be + 8 cd
+ 4 bf - 4 ce — 24 d 2
+ 12 de
2356 =
+ 8 bf + 10 ce
— 6 cf — 30 de
+ 18 df
1456 =
+ 6 ce
+ 6 cf — 18 de
- 2 df+ 8 e 2
2456 =
+ 6 cf
- 2 df — 10 e 2
+ 6 ef
3456 =
+ 16 df- 10 e 2
-12 ef
+ 6/ 2
14. Between the expressions 21, 23, &c., and 1234, 1235, &c., there exist relations
the form of which is indicated by the following Table:
t
C. VI.
39