Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

324 
A THIRD MEMOIR ON SKEW SURFACES, OTHERWISE SCROLLS. 
[410 
+ XY 3 
-2 FGH 
+ XY 2 Z 
AFH - BGH - 3F 2 H + 2FG 2 
+ XY 2 W 
2ABH - 2AFG - BFH + 2GGH + ( SF 2 G 
+ XYZ 2 - 
-AFG- 2BFH + BG 2 - GGH 
+ XYZW 
A 2 F- 3AF 2 -SABG + AGH- 2B 2 H + BFG + 5GFH- 2GG 2 
+ XYW 2 
2A 2 B - SABF+ 2AGG + B 2 G + BGH - 6GFG 
+ XZ 3 
AF 2 - 2CFH + GG 2 — F 3 
+ XZ 2 W 
2 ABF -2 AGG- 2 BGH - 3 BF 2 + GFG 
+ XZW 2 
A 2 G + AB 2 + 3ACF — 3B 2 F + BGG - 2G 2 H 
+ XW 3 
SABG-B 3 + SG 2 G 
+ F 4 
F 2 H 
+ Y S Z 
BFH - F 2 G 
+ F 3 If 
AF 2 + B 2 H - 2GFH - F 3 
+ Y 2 Z 2 - 
-BFG+GFH + F 3 
+ Y 2 ZW 
ABF—B?G + BGH + 2GFG 
+ Y 2 W 2 
AB 2 -2AGF - R-F + G 2 H + 3GF 2 
+ YZ 3 
BF 2 — GFG 
+ YZ 2 W 
ACF+ 2B 2 F- BGG - 3GF 
+ YZW 2 
ABC + B 3 — 2BGF — G 2 G 
+ YW 3 
AC 2 + RC — SC 2 F 
+ Z i 
GF 2 
+ Z 3 W 
2 BCF 
+ Z 2 W 2 
B 2 C+2G 2 F 
+ ZW 3 
2 BG 2 
+ If 4 
c\ 
where, in regard to the symmetry of this equation, it is to be observed that we may 
interchange X and W, and Y and Z, leaving A, F unaltered but interchanging B 
and — G, and also G and H; thus the coefficient of X 3 Z being AH 2 — 3FH 2 + G 2 H, 
that of YW 3 is AG 2 — SFC 2 + B 2 G, = AC 2 + B 2 C — SG 2 F. Or, again, the coefficient of Y 3 Z 
being BFH - F 2 G, that of YZ 3 is -GFG + F 2 B, = BF 2 - CFG. 
77. But the equation may be written in the much more simple form 
X (- a 2 8 + 3a/3 7 - 2/3 3 ) (Rec. III.) 
+ F (—• a/38 + 2a 7 2 — /3 2 7 ) 
4- Z ( a 7 8 — 2/3 2 8 -f /3 7 2 ) 
+ W ( a8 2 — 3/3 7 8 + 2 7 3 ) = 0,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.