Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

411] 
A MEMOIR ON THE THEORY OF RECIPROCAL SURFACES. 
333 
9. It is clear that p will in like manner denote the order of the node-couple 
curve. 
10. I express in terms of 
n, 6, c, h, k, /3, 7 , j, 6, x, C, B 
such quantities and combinations of quantities as can be so expressed. We have 
a = a = n(n— 1) — 2b — 3c, 
k = on (n — 2) — 66 — 8c, 
S' = \n (n - 2) (n 2 - 9) - (n 2 - n - 6) (26 + 3c) 4- 2b (b - 1) + 66c + fc (c - 1), 
4 i = 126 + c (on — 6) — 6c 2 — 07 + 3 6 — 2x> 
246 = (- 8n + 8) 6 + (Ion. - 18) c + 86 2 - 18c 2 - 2 (8* - 186) + 20/3 - 15 7 + 4j 4- 96» + 6%, 
q = 6 2 — b — 26 — 37 — 6i, (i supra), 
r = c 2 — c — 2h — 3/3, 
2<r = c (n — 2) — (4/3 + 7) — 0, 
8p = (1 Qn- 24) 6 + (- Ion + 18) c - 86 2 + 18c 2 + 2 (8& - 18h) - 9 (4/3 + 7) - 4j - 90 - 6%, 
8« = 8n (n - 1) (n - 2) + 6 (- 32m + 56) + c (- I7n + 46) + 86 2 - 18c 2 
- 2 (8fc - 186.) + 17 (4/3 + 7) + 4>j + 176 + Q X + 8B > 
2S> = n (n — 1) (n — 2) (m — 3) + 6 (— 4/i 2 + 20/i — 24) + c (— 6m 2 + 15m — 18) + 126c + 18c 2 
+ {8k - 18h) - 9 (4/3 + 7) - 96 + 2C, 
8n = 8m (m - l) 2 + (- 32m + 40) 6 + (- 21m + 30) c + 86 2 - 18c 2 
- 2 {8k - 18h) + 21 (4/3 + 7) - 12j + 216-18 X ~ 16(7 - 24B, 
c' = 4m (m — 1) {n — 2) + (— 16m + 28) 6 + (— 10m + 26) c + 46 2 — 9c 2 
- {8k - 186) + 10 (4/3 + 7) - 4j + 106» - 6 X ~ 6C7 - 8B, 
2b' — — a + n (n — 1) — 3c', (m', c' supra), 
o-' + 2j' + + 2(7' + 4B' = 4m (m - 2) - 86 - 11c, 
p' - 4/ - 6>x - 4(7' — OB' = — 1 1m (m — 2) + a (n' — 2) + 226 + 30c, {n, a supra), 
2a-' + 4/3' + 7' + 6'= c' (m' — 2), (m', c' supra), 
46' - 3 {%' + 3/3' + 2 7 ') - 2p' - / = (- 4m' + 6) 6' + 2b' 2 , (»', 6' supra), 
66-2 (¿' + 3/3' + 27') - 3o"' - x' = (- 4m' + 6) c' + 3c' 2 , (n', c' supra); 
{or in place of either of these, 
8k' - 186' - 4p' + 9<r' - 2j' + Sx = (26' - 3c') {(m' - 2) (n' - 3) - a}, (m', 6', c', a supra)}, 
p 4- 2/S' 4- 37' 4- 31' = 6' (m' - 2), (m', 6' supra), 
2/^' 4- /3' 4- 3f' +y — 2p =0, 
3r' 4- 2i' + %' - 5cr' - /3' - 40' = c', (c' supra), 
(twenty-three equations, being a transformation of the original system of twenty-three 
equations).
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.