348 A MEMOIR ON THE THEORY OF RECIPROCAL SURFACES. [411
54. Forming the reciprocal equation
/3 = 2n' (n — 2) (11m' — 24)
-V (An'-B) + C'q
— c' (Dn — E) + F'r
— G/3' — Hy — It'
+ linear function (%, j', 6', x> O', B', i, j, 6, %, G, B),
and substituting herein the values which belong to the surface of the order n without
singularities, we should have identically
0 = 2 n(n — l) 2 (n — 2) (n 2 + 1) (llw 8 — 22m 2 + 11m — 24)
— \n (m — 1) (m — 2) (m 3 — m 2 + m — 12) [An (m — l) 2 — B]
+ m (m — 2) (m — 3) (m 2 + 2m — 4) G
— 4m (m — 1) (m — 2) [Dn (m — l) 2 — E]
+ 2m (m — 2) (3m — 4) F
— 2m (m — 2) (11m — 24) G
— 4m (m — 2) (m — 3) (m 3 + 3m — 16) H
— j?n (m — 2) (m 7 — 4m 6 4- 7m 8 — 45?i 4 + 114/? 3 — 111?*. 2 + 548m — 960) I;
or dividing the whole by n (n — 2), this is
0 = 2 (m - l) 2 (m 2 + 1) (11m 3 - 22m 2 + 11m - 24)
— k (m — 1) ( n3 — m 2 + m — 12) [An (m — l) 2 — B]
+ (m — 3) (m 2 + 2m — 4) G
— 4 (m — 1) [Dm (m — 1 ) 2 — E]
+ 2 (3m - 4) F
- 2 (11m- 24) G
— 4 (?2 — 3) (m 3 + 3m — 16) H
— j;(n 7 — 4m 6 + 7m 5 — 45?i 4 + 114m 3 — 111m 2 + 548?i- — 960) I.
55. And then, expanding in powers of n and equating to zero the coefficients
of the several powers n 7 ,...n°, we obtain
22
-88
+ 154
-224
+ 250
- 184
+ 118
—
48
U
+ 2 A
+ ^A
- 20A
+ ^A
- 6A
+ ^B
- B
+ B
— 1 3 R
+
6D
+ C
- G
- 10C
+
12C
- 4D
+ 12 D
- 12 D
+ 4 D
+ 4D
4 E
+ 6D
-
8 F
- 22C
+
48 G
- 4F
+ 12 H
— 12ZT
+
i—*
o
o
tq
—
192 H
'
+11
-K
+
-19/
/
+ 160/
II
II
II
ii
11
ii
ii
II
0
0
0
0
0
0
0
0