411] A MEMOIR ON THE THEORY OF RECIPROCAL SURFACES. 353
where x, x', g are constants which remain to be determined. The cubic surfaces fail
to determine them, for the reason that in all of them we have i = 0, i! = 0; and
165 + 8^ + 6 — 16-6' + 8 X + 0': this last is a very remarkable relation, for the existence
of which I do not perceive any a priori reason.
Substituting herein for q, r their values from No. 11, this may be written in the
form
/3' = 2ft (ft - 2)(lift - 24) + 6 (- 66ft + 184) + c (- if*» + 240)
+ 141/3 + ^7 + 66«
x' i! + 7j' - 6 X ' - \&- 50' - 18B'
-(# + 87)i -2lj -^ x + ^0-24>O
+ j\g (-16B-8 x -0 + 16B' + 8 X + ff).
64. We have of course by interchanging the unaccented and accented letters, the
reciprocal equation giving the value of ¡3.
Article Nos. 65 to 68. Recapitulation.
65. In recapitulation, I say that we have between the 42 quantities
ft, a, S, k ;
/ / W /
n, a } o, k ;
b,k,t,q,p,j; c, h, r,
b', k', t', q', p, j'; c', h\ /,
J, O', x\ /3', ï; B', O',
in all 25 equations, viz. these are
a = a',
a' = ft (ft — 1) — 26 — 3c,
k = 3ft (ft — 2) — 66 — 8c,
S' = \n(n— 2) (ft 2 — 9) — (ft 2 — ft — 6) (26 + 3c) + 26 (6 — 1) + 66c + fc (c — 1),
a (n — 2) — k — B + p + 2<r,
6 (ft - 2) = p + 2/3 + 3y + St,
c (ft — 2) = 2cr + 4/3 + 7 + 6,
a (ft — 2) (ft — 3) = 2 (3 — (7) + 3 (ac — 8a - x ) + 2 (a6 — 2p — j),
6 (ft — 2) (ft — 3) = 4& + («6 — 2p - j) + 3 (6c — 3/3 — 2y — ¿),
c (ft — 2) (ft — 3) = 6h + (ac — Sa — x ) + 2 (6c — S/3 — 2y — i),
q = b 2 - b — 2k — Sy — 6t,
r — c~ — c — 2h — 3/3,
a — n (ft/ — 1) — 26' — 3c',
k = 3ft' (ft' - 2) - 66' - 8c',
S = \ri (ft' - 2) (ft' 2 - 9) - (ft' 2 - ft' - 6) (26' + 3c') + 26' (6' - 1) + 66V + fc' (o' - 1),
45
c. VI.