388 A MEMOIR ON CUBIC SURFACES. [412
Write as before (A, B, C, F, G, H) for the inverse coefficients (A = be — f 2 , &c.), and
K = abc — a/ 2 — brf- — ch 2 + 2fgh ; and moreover
= (A, B, C, F, G, H\x, y, zf,
P = Ax + Hy + Gz,
Q = Hx + By + Fz,
jR = Gx + Fy + Gz,
t =fe + gy + hz,
U = afyz + bgzx + chxy,
V = 2Kxyz — aPyz — bQzx — cRxy
= — a Hy 2 z — b Fz 2 x — c Gx 2 y
— a Gyz 2 — b Hzx 2 — c Fxy 2
+ (— abc — af 2 — b(f — ch 2 + 4fgh) xyz,
W= (A, B, G, F, G, R\ayz, bzx, cxy) 2 ,
L = k 2 w 2 — 2 ktw — <3>,
M=kw U+V,
N = 2 kabc xyzw + W:
54. Then the invariants of the ternary cubic are
S — L 2 — 12 kwM,
T — L ?j — 18&W LM — 54 k 2 w 2 N;
and the required equation of the reciprocal surface is
IQg 2 {(L 2 — 12kwMf — (L 3 — 18kwLM — 54<k 2 w 2 R) 2 } = 0,
viz. this is
0 = L 3 N = (k 2 w 2 — 2ktw — C I>) 3 (2kabc xyzw + W)
+ L 2 M 2 + (k 2 w 2 — 2 ktw — d>) 2 (kw U + V) 2
— 18 kiuLMN — 18&«; (k 2 w 2 — 2ktw — <f>) (kw U+V) (2 kabc xyzw + W)
— 16kwM 3 — 16kw (kwU + F) 3
— 2*Ik 2 w 2 N 2 — 27 k 2 w 2 (2kabc xyzw + IF) 2 ,
which, arranged in powers of kw, is as follows; viz. we have
CoefF. (kw) 7 = 2abc xyz,
(kw) 6 = 2abc xyz (— 6i) 4- W
+ U\
(kw) 5 = 2abc xyz (— 3<i> 4- 12i 2 ) + W (- 6t)
+ U 2 (-4t) + 2UV
— SQabcxyzU,