412]
A MEMOIR ON CUBIC SURFACES.
393
63. And the coordinates of the fifteen distinct lines are
(a)
(6)
(o)
(/)
(9)
(h)
whence equations may be written
0
0
0
0
-1
1
(1) X = 0, Y + Z = 0
0
0
0
1
0
-1
(2) Y = 0,Z+X = 0
0
0
0
-1
1
0
(3) Z = 0, X+Y = 0
0
0
0
0
— n
m
(4) X=0, viY+nZ=Q
0
0
0
n
0
-l
(5) Y=0,nZ + lX=0
0
0
0
— m
l
0
(6) Z=0, IX+mY=0
1
0
0
0
0
0
II
II
o
0
1
0
0
0
0
(25) F = 0, W = 0
0
0
1
0
0
0
(36) Z=0, W=0
l
n
11
rrv
— nlv
0
(15) IX+ 11Y+ nZ = 0, W+nvZ= 0
l
m
VI
— VI 2 /A
0
IvifJL
(16) IX + mY+mZ = 0, W+mp.Y= 0
l
m
l
0
l 2 X
— Imp.
(26) lX+mY+ IZ = 0, W+l\X=0
n
m
n
mnv
- 1VV
0
(24) nX+mY+nZ = 0, W+nv Z=0
rn
VI
11
— vin\x
0
Vl 2 p.
(34) vxX + viY + nZ= 0, W+ vipY= 0
l
l
n
0
1ll\
(35) IX+ lY+nZ= 0, W + l\X=Q
64. The rays are not, the mere lines are, facultative; hence b' = p = 9 : t' = 6.
65. The equation of the Hessian surface is
— W (X + Y + Z) (IX + m Y + nZ) (p,vX + v\ Y + \p,Z)
— k (l-X 4 + m-Y* + n-Z i — 2mnY 2 Z 2 — 2nlZ 2 X 2 — 2lniX 2 Y-)
+ kX YZ {(l 2 + 3Ini 4- 3In + mn) X + (m 2 + 3inn + 3ml + nl) F+ (n 2 + 3nl + 3inn + bn) Z) = 0.
The Hessian and cubic surfaces intersect in an indecomposable curve, which is the
spinode curve; that is, spinode curve is a complete intersection 3x4; a = 12.
The equations may be written in the simplified form
W(X+Y+Z) (IX + mY + nZ) + kXYZ = 0,
№ + m 2 F 4 + riW - 2mnY-Z- - 2nlZ-X* - 2lmX*Y*
— 4A r \ Z \l (m + n) X + in (n +1) Y + u (l + in) Z] = 0.
We may also obtain the equation
k- (X+Y + Z) (IX + viY+ nZ) {IX 2 + m F 2 + nZ 2 - (in + n) YZ - (n + l) ZX - (l + in) X Y]
+ X 2 Y-Z 2 + fx 2 Z 2 X 2 + v 2 X 2 Y 2 - 2XYZ(fivX + v\Y+ \pZ) = 0,
C. VI.
50