412]
A MEMOIR ON CUBIC SURFACES.
399
(a)
(b)
(0)
(/)
(?)
(A)
fi
-¥
0
0
0
y
(!')
AT - F = 0, yF + f x lF= 0
f 2
-V
0
0
0
y
(2')
f 3
-¥
0
0
0
y
(3')
55
f 4
0
0
0
y
(4')
55
8
/1 i\
1
/1 1\
y
1
/1 1\
1 /1 l\
(12. 3'4')*
¥2
8
U + tJ
-y
(l + fj
“p4
55 1
v5 + 5)
~5f s (5 + f 4 )
s
fl l \
1
/1 1\
y
1
/1 1\
(13.2'4') „
~¥s
8
-y
(5 + 5)
“ f~f
1 2 i 4
p
l5 + fj
_ 55 (5 + 5)
s
¥4
8
r-H |ej-?
+
1—1 It+i 1
1
-y
(H)
y
f 2 f 3
55
:hj
-f.f.Gus)
(14.2'3') „
8
/1 1\
1
/1 1\
V
1
a i\
(23. 1'4') „
8
U + fj
-y
(fl + fj
55*
vf 2 + f 3 )
~p,(5 + 5)
8
fl 1\
1
fl 1\
y
1
a i\
1 /1 1\
(24. 1'3') „
8
U + fj
-y
(fl + V
~ TJ
1 1 I 3
fiv
vf 2 + f)
~ 55 (5 + 5)
8
/1 1\
1
/1 1\
V
1
a i\
(34.1'2') „
~ ¥4
8
-y
(fl + f 2 )
-55
p
A + f.)
”55(5 + f.)
^equations are
s {X - (f, + 5) Y] - u,Z = 0, y (X - (f, + f 4 ) Y] -f,f 4 W= 0,
[and similarly for each of the remaining five lines].
76. To verify the equations of the line 12.3'4', observe that the two equations give
+ 8 IT = 7 8 jx (A + J.) _ F(1 + 1 +1 + J)},
ZW = fffj (X - (f, + Q YX - (f, + f 4 ) Y\:
the equation of the surface, multiplying by Z and observing that — yS = afif 2 f 3 f 4 ,
becomes
X‘ZW + X Y> (yZ + S W) + yS Y> - f , (X - f, Y) (X - f. Y) (X — f, Y) (X - f 4 Y) = 0;
n h b M
and substituting the values just obtained, this is
X 2 [X - (f> + f 2 ) F] [X - (f 3 + f 4 ) F] + IP [Z (fif 2 + f 3 f 4 ) - F(fifsfs + f x f 2 f 4 + fif 3 f 4 + f 2 f 3 f 4 )]
+ f 4 f 2 f 3 f 4 F 4 - (Z - fjF) (Z- f 2 F) (Z - f 3 F) (Z - f 4 F) = 0,
which is in fact an identity.
77. The facultative lines are the transversal and the six mere lines; b'= p =7;
t' = 3.