Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

414 
A MEMOIR ON CUBIC SURFACES. 
[41.2 
111. To transform the equation so as to put in evidence the nodal curve, 
I collect the terms according to their degrees in (y, z) and (x, tv); viz. the equation 
thus becomes 
64 x 4 tv 3 — 128x 2 w 3 + 64w 7 
+ z 2 { — \Qx 3 w 2 4- 144icw 4 ) 
+ zy ( 16(te 2 w 3 4- 96w 5 ) 
4- y- ( 48oc?tv 2 + 80.tw 4 ) 
+ z 4 . — 27 w 3 
4- z 3 y . — 3 dxtv 2 
+ z 2 y 2 . — 8x 2 tv + 30tv 3 
4- zy 3 . 44xw % 
+ y 4 .12 x-w + w 3 
+ z 3 y 3 . — w 
+ z-y 4 . - x 
+ zy 5 . w 
+ y 6 . x = 0 ; 
and if for a moment we write z = a + y, y = a — <y and collect, ultimately replacing 
a, 7 by their values \ (z + y), \ (z — y), the equation can be expressed in the form 
64w 3 (¿c 2 — w-f 
+ 8iv- (z + y y (x + w y (x + 3iv) 
+ 8w 2 (z — y y (x — w y (x — 3w) 
— 32w 2 (z 2 — y 2 ) (x 2 — tv 2 ) x 
+ \w (z +y) 4 (x + w ) 2 
— w (z + y ) 3 (z — y)(x + tv) (3x + 7tv) 
+ (z 2 — y 2 ) 2 (1L» 8 — 27w 2 ) 
— w (z + y ) (z — y) 3 (x — tv) (3x — 7w) 
4- \w (z —y) 4 (x — tv) 2 
— y 3 (z 2 — y 2 ) (ztv 4- xy) = 0, 
and observing that we have 
ztv 4- xy = - z (x — tv) 4- x (z 4- y) 
= z(x + w) -x (z - y), 
we see that every term of the equation is at least of the second order in z 4- y and 
x — w conjointly; and also at least of the second order in z — y and a?4-tv conjointly;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.