A MEMOIR ON CUBIC SURFACES.
419
412]
118. Take m x , m 2 as the roots of the equation (m — l) 2 = 4am, so that m x + m 2 = 2 + 4a,
m x m 2 = 1, then the planes are
X = 0,
[ 7]
k^
N
II
o
[ 8]
Z =0,
[ 9]
F + £ +X = 0,
[ 12]
F+ A r + F = 0,
[ 34]
F+Z + F = 0,
[ 56]
k^
II
I
i—*
.N
[ 13]
F = (m 2 — 1) X,
[ 24]
F = (m 2 - 1) X
[ 15]
F = (mj — 1) Z,
[ 25]
Y = (m, - 1) F,
[ 46]
Y= (m 2 — 1) F,
[ 35]
kH
N
II
o
[789]
F+X+Z+ F= 0,
[789]
119. And the lines are
a
b
c
/
9
h
equations may be written
0
0
0
0
0
1
(1)
o
II
k
o
II
0
0
0
1
0
0
(8)
Z =0, 7 = 0
0
1
0
0
0
0
(9)
o
II
k
o'
II
K
1
1
1
0
0
0
(7)
Y + Z + X = 0, 17 = 0
0
0
1
-1
1
0
(8)
7+ A" + F = 0, Z =0
1
0
0
0
- 1
1
(9)
Y + Z + 17=0, AT=0
0
0
0
1
1
1
(1)
7= (m x — 1) X =(m 2 — l)Z
m x — 1
m 2 — 1
0
0
0
1
1
1
(2)
Y=(m 2 -l)X=(m x -l)Z
m 2 - 1
m x — 1
-1
1
0
0
0
1
(3)
7 = (m 2 — 1) 17 = (m x - 1) X
m 1 — 1
m 2 - 1
-1
1
0
0
0
1
(4)
7=(m 1 -l) W=(m 2 -l)X
m 2 — 1
m x — 1
0
1
1
1
0
0
(5)
Y = (m x — \)Z= (m 2 — 1) 17
m x - 1
m 2 — 1
0
1
1
1
0
0
(6)
7= (m 2 — 1) A - = (wq - 1) F
m 2 — 1
m x — 1