30
ON A LOCUS DERIVED FROM TWO CONICS.
[389
so that
A — 2lp, .. F = mr + nq, ..
A' = 21'p’, .. F' = m’r' 4 n'q',..
(.BG — F 2 , ...) = — {mr —nq, np —Ir, Iq —mp) 2 ,
{B'C -F'\ ...) = - {mV - n'q', n'p - IV, l'q - m'pj,
BC' + B'G — 2FF' = 2 {{mn — min) (qr' — qr) — {mr' — nq ) {m'r — n'q), ..
and substituting these values the equation is
{2k + l) 2
a, /3, 7
2
a > /3, 7
2 "{
a , /3 , 7
a, /3, 7
-
a, /3, 7
a, /3 , 7
l, m, n
1', ml, n
l, m, n
p, q, r
l , m, n
Ï, ml, nl
p, q , r
p, q , r'
V, ml, n
p, q', r'
p', q, r'
p, q , r
) 2 = 0,
which, if A, B, C denote
a,
13,
7
a ,
¡3,
7
y
a, /3,
7
a,
/3,
7
>
a,
/3,
7
<*> /3, 7
l,
m,
n
v,
ml,
n
l, m,
n
p'>
r
l,
m,
n
V, ml, n
P>
r
P>
<1 >
r
i , 771 ,
n
P>
r
P'>
4 >
r'
p, q , r
respectively, (A + B + C = 0) is, in fact, the equation
{2k + 1)*A*-(B- C) 2 = 0,
or, what is the same thing,
that is
l- B l-°
k - A 01 k ~ A ’
either of which expresses the anharmonic property of the points of a conic in the
form given by the theorem ad quatuor lineas.
Reverting to the case of two conics, then if these be referred to a set of con
jugate axes, the equations will be
aa?+ by* + cz*=0,
ax 2 + b'y 2 4- dz 2 = 0,
we have K = abc, K' — a'b'c',
© = {be' 4- b'c) aa'x 2 4- {ca 4- c'a) bb'y 2 + {ab' + alb) ccz 2 ,
and the equation of the quartic curve is
4 {2k + l) 2 abed b'c {ax 2 + by 2 + cz 2 ) {ax 2 4- b'y 2 + cz 2 )
— \{bc + b'c) aa'x 2 4- {cd + c'a) bb'y 2 + {ab' + ab) cc'z 2 } 2 = 0.