Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

30 
ON A LOCUS DERIVED FROM TWO CONICS. 
[389 
so that 
A — 2lp, .. F = mr + nq, .. 
A' = 21'p’, .. F' = m’r' 4 n'q',.. 
(.BG — F 2 , ...) = — {mr —nq, np —Ir, Iq —mp) 2 , 
{B'C -F'\ ...) = - {mV - n'q', n'p - IV, l'q - m'pj, 
BC' + B'G — 2FF' = 2 {{mn — min) (qr' — qr) — {mr' — nq ) {m'r — n'q), .. 
and substituting these values the equation is 
{2k + l) 2 
a, /3, 7 
2 
a > /3, 7 
2 "{ 
a , /3 , 7 
a, /3, 7 
- 
a, /3, 7 
a, /3 , 7 
l, m, n 
1', ml, n 
l, m, n 
p, q, r 
l , m, n 
Ï, ml, nl 
p, q , r 
p, q , r' 
V, ml, n 
p, q', r' 
p', q, r' 
p, q , r 
) 2 = 0, 
which, if A, B, C denote 
a, 
13, 
7 
a , 
¡3, 
7 
y 
a, /3, 
7 
a, 
/3, 
7 
> 
a, 
/3, 
7 
<*> /3, 7 
l, 
m, 
n 
v, 
ml, 
n 
l, m, 
n 
p'> 
r 
l, 
m, 
n 
V, ml, n 
P> 
r 
P> 
<1 > 
r 
i , 771 , 
n 
P> 
r 
P'> 
4 > 
r' 
p, q , r 
respectively, (A + B + C = 0) is, in fact, the equation 
{2k + 1)*A*-(B- C) 2 = 0, 
or, what is the same thing, 
that is 
l- B l-° 
k - A 01 k ~ A ’ 
either of which expresses the anharmonic property of the points of a conic in the 
form given by the theorem ad quatuor lineas. 
Reverting to the case of two conics, then if these be referred to a set of con 
jugate axes, the equations will be 
aa?+ by* + cz*=0, 
ax 2 + b'y 2 4- dz 2 = 0, 
we have K = abc, K' — a'b'c', 
© = {be' 4- b'c) aa'x 2 4- {ca 4- c'a) bb'y 2 + {ab' + alb) ccz 2 , 
and the equation of the quartic curve is 
4 {2k + l) 2 abed b'c {ax 2 + by 2 + cz 2 ) {ax 2 4- b'y 2 + cz 2 ) 
— \{bc + b'c) aa'x 2 4- {cd + c'a) bb'y 2 + {ab' + ab) cc'z 2 } 2 = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.