Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

532 
ON POLYZOMAL CURVES. 
[414 
153. We have to show that the four foci (p = 0, p' = 0), (q = 0, q'= 0), (r=0, 
r' = 0), (s = 0, s' = 0) are a set of concyclic foci ; that is, that the lines p = 0, q = 0, 
r = 0, s - 0 correspond homographically to the lines p' = 0, q' = 0, r' = 0, s' = 0 ; or, what 
is the same thing, that we have 
1, 
a, 
a', 
0L0L ' 
1, 
¡3, 
/3', № 
1, 
7 > 
7> 
77 
1, 
8, 
8', 
88' 
or, as it will be convenient to write this equation, 
a —/3 7 — 3 _ a — 8 /3 — 7 
154. We have 
yS + 2X 2 Z + V« / y8 7 + 2A]Z 7 + A^a 7 
7== T+SIaW 7= 1 + 2H\ l + V ’ 
j /3 + 2X 2 Z + X 2 2 a /3 + 2XoZ + X 2 2 a 7 
= 1 + 2m., + V ’ = 1 + 2ZTX 2 + X 2 2 * 
The expressions of a —8, &c., are severally fractions, the denominators of which disappear 
from the equation; the numerators are 
for a - 8, = a (1 + 2X 2 H + X 2 2 ) — (/3 + 2X 2 Z 4- aX 2 2 ), 
= a — /3 + 2X 2 (aZT — Z); 
for ¡3 — 7, = /3(1 + 2X x Zf + Xj 2 ) — (/3 + 2XjZ + aXd), 
= Í 2 (/5^ — X) (a — ; 
for 7 - 8, = (¡3 + 2ZXj + aX x 2 ) (1 + 2H\, + X 2 2 ) 
— (/3 + 2ZX 2 + aX 2 2 ) (1 + 2-flAj + Xj 2 ), 
= («' - /3') {2ZT 2 a/3 - 2HL (a + /3) + 2Z 2 + * (a - /3) 2 } ; 
and it hence easily appears that the equation to be verified is 
2ZZa/3-2ZfZ(a + /3) + 2Z 2 + i(a-/3) 2 a -/3 + 2 (aZT - L )X 3 2 (/3 ZZ — Z ) - (a - ¡3)\ 
2H 2 a'{3'-2ZTZ 7 (a 7 +/3 7 ) + 2Z' 2 + ¿ (a' - /37 ~ a 7 - /3' + 2 (a 7 ZT - Z 7 ) X 2 ' 2 (/3 7 ZT - Z') - (a' - /3') X, * 
155. This is 
Z — C A + B\ l + (TX 2 + ZXjX 2 
Z^C 7 = 2 ' + Z 7 X 2 + 0% + DXX, ’ 
if for shortness 
A= 2 (a — /3)(AH — L) , ¿' = 2(a'-/3')(/3'ZT-Z') , 
Z=- (a — /3) 2 , Z 7 =- (a 7 — /3') 2 
C' = 4 (aZf - Z) (/3ZT- Z), <7 = 4 (a'ZT - Z 7 ) (/3 7 ZZ - Z 7 ), 
D = — 2(a — /3) (aH — L) , Z> 7 = -2(a 7 -/3 7 )(a 7 ZZ-Z 7 ) , 
and the equation then is 
¿Z 7 - ¿'Z + GA' - G'A - (X, + A,) (.BC - B'G) + X 1 X 2 (CD' - G'D - (BE - ED)).
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.