38
THEOREM RELATING TO THE FOUR CONICS WHICH TOUCH THE
[390
From the last equation we have
(cq - a 4 ) = 2 {0 - a V (X) - a' V (X')} - 2« 4 {d> - V (X) - V (X')}
= 2 (a 4 — a 4 ) <I> — 2 (a - a 4 ) V (X) — 2 (a' — a 4 ) V (X');
that is
( a i - a 4 ) $ - 2 (a - a 4 ) y № -2(a'~ a 4 ) V (X') = 0;
or substituting for V (X), V (X 7 ) their values in terms of <E>, we find
(a - a 4 ) (a 4 - a,) (a' - a 4 ) (a 4 - a 3 )
a, — a. —
a — a.,
a -a 3
= 0,
which may be written
(a ' - 1 *> i 1 +Hi) - <* - a *> ( : + Hf) - °-
that is
or again
that is
or finally
(a 2 —a 4 )(a 2 —a 4 ) (a 3 — a 4 ) (a 3 - a 4 ) _
a, + a., - a 4 - a 4 + ^ = 0 ;
a — a, a — a,
(o,! _ a,) (* + Hi) + ^ _ a4> i 1+ Hi) = °’
, .a — a 4 , .a — a.
(«2 - ai) (a - a 4 ) (a' - a 3 ) + (a 3 - a 4 ) (a - a 2 ) (a' - a 4 ) = 0,
which is a known form of the relation
1,
a + a',
aa
=0,
1,
«1 + «4,
a,a 4
1,
®2+ a 3>
a„a s
which
gives the involution of the quantities a
a;
«i» «45
We have in like manner
1,
ft -f Cl ,
a'a"
= 0,
1,
a, + a,,
a i a 2
1,
a s + a 4 ,
a 3 a 4
and
1,
a" + a,
a"a
= 0,
1,
«i + <* 3 ,
«1*3
1,
a 2 + a 4 ,
a 2 a 4
which
give the involutions of
the systems a,
a" ;
*1, a 2 ;
respectively.