563
414]
and then
whence
and we have thus
and similarly
ON POLYZOMAL CURVES.
(d — a) Vi = (b — d) \/in + (c — d) Vn,
(d — a) Vp = (a — b) Vra + (a — c) Vw,
d*Jl — « Vw = ^—— (b Vw, —• c Vm),
a — a
'W— c
Vra);
^^+A=+\/ bt) < Wre ~ 0 Vm > :
(observe that in the case not under consideration b Vn — c Vra = 0, and therefore
VZj + V??^ + Vii 2 = 0, V/ 2 + Vra 2 + Vw 2 = 0).
In the present case we have
a: b : c: d = (6-c)(c-d)(d-6): - (c - d) (d - a) (a-c): (d-a)(a-b)(b-d) : -(a-b)(b-c)(c-a),
and thence
ad _(b — c) 2
be (c£ — a) 2 ’
so that only one of the two sums Vi + Vra^ + V^, V^ + Vw 2 + V?? 2 is =0, viz., assuming
/ad _ b — c
V be d — a
we have VZ X + V?7q + V?ij = 0.
We have then also
a^lx + b Vm x + c V?ij = a VZ + 6 Vra + c Vw
+
Vp [ aa Vp .J±
-\/ra (№,/s_
cc
but we find
and thence
dd Vi — aa V« = ~ 7 —- C
* a — a
=- v/’ {a (di ' /l ~ oa ^ “ ■Vra (№ Vre "
(6b Vw — cc V ra),
cc
a i Vm, + c VV, = ^
in virtue of a/= -y———• Hence V£ : Vra x : V^, = b-c : c - a : a-b, or the corre-
V be d — a
sponding trizomal is a conic, but the other trizomal is a quartic.
71—2
cc V ??i), = 0,