Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

110 
ON A CERTAIN SEXTIC TORSE. 
[436 
if for shortness 
U' = y-z . c 2 /i 4 / 4 (3b 2 g 2 — c l h- ) 
+ yz-. b~g i f i (3c 2 h 2 — b 2 g 2 ) 
+ z 2 x . a 2 / 4 / (8c 2 h 2 — a 2 / 2 ) 
+ 2^. c 2 /i 4 / (3a 2 / 2 — c 2 /i 2 ) 
+ x-y. 6 2 //i 4 (3a 2 / 2 — 6 2 / ) 
+ aa/ 2 . a 2 / 4 /i 4 (36 2 / — a 2 / 2 ). 
Substituting the 0-values, the terms of U, other than £T, are at once seen to 
contain the factor (0 + a) (0 + /3) (0 + 7), and we have 
M — 3abc ( a 2 f 6 (h 4 y 2 — 7h 2 g 2 yz + g i z 2 )' 
< + b 2 g 6 (f 4 z 2 — 7f 2 h 2 zx + lb 4 x 2 ) - 
l + c 2 /^ (/a; 2 - 7//Vy +/y) , 
+ 7 (a 4 / 4 + 6y + <?k*)f*fh* abc (0 + a) 3 (0 + ¡3) 2 (0 + 7)' 
+ M\ 
where 
U' + (abc) 3 (6 + 3) 4 P 3 Q = (6 + a) (0 + /3) (0 + 7) M\ 
18. Write for shortness p, q, r — (af, bg, ch); after a complicated reduction, I obtain 
3abc M' = a 2 g 2 h 2 (r — p) (p — q) (— 2p 4 + op'-gr — 6q 2 r 2 ) a? 2 
+ b 2 h 2 f 2 (p — q)(q — r)(— 2/ + 5/rp — Qq 2 p 2 ) y 2 
+ c 2 / 2 / (5 — r ) (?• — p) (— 2r 4 + 5r 2 pg — Op 2 /) 2 2 
+ 2/ 2 g 2 h 2 b 2 c 2 (7p 4 — 20p 2 qr -f 4/r 2 ) yz 
+ 2f 2 g 2 h 2 c 2 a 2 (7/ — 20pq 2 r + 4r®p 4 ) 2a? 
+ 2f 2 g 2 li 2 a 2 b 2 (7r 4 — 20pqr 2 + 4p 2 /) X V 
— 2f 2 g 2 h 2 (p i + g 4 + r 4 ) (a 2 a: + 6 2 a/ + c 2 2) 2 . 
We then have 
9a6c if = terms (a?, 2/ + 9a6c ilP, O = terms (a;, y, 2) 
as above; and 
27ikT a&c + 30 + (*) = 0, 
which gives (*). 
19. After all reductions we find: 
— x (*) = a 2 g 2 h 2 (28p 6 — 84p 4 qr + Q2p 2 q 2 r 2 — 28/r 3 ) x 2 
+ b 2 h 2 f 2 (28q 6 — 84pq*r + 62p 2 q 2 r 2 — 28r 3 p s ) y 2 
+ <?f 2 g 2 (28r 6 — 84<pqr + 62p 2 q 2 r — 28p 3 q 3 ) z 2 
4-/ 2 (— 3/ + 14>p 6 qr — 130p 4 q 2 r 2 — 136p 2 q 3 i^ + 4>2q*r*) yz 
+ g 2 (— 85 s + 14>pq B r — 130p 2 q*r 2 — V8Qp 3 q-r 3 + 42?y 4 ) zx 
+ h 2 (— 3r 8 + 14>pqv r> — 130p 2 q 2 7 A — 136p 3 q 3 r 2 + 42p l q*) xy;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.