Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

ON A CERTAIN SEXTIC TORSE. 
Ill 
436] 
or observing that the coefficients of a 2 g 2 h 2 x 2 , b 2 h 2 fy and c 2 f 2 g 2 z 2 are equal to each other 
and to 
the equation becomes 
62p 2 q 2 r 2 — 28 ((f r r + r ? jr +p 3 q 3 ), 
(*) = — 3 (62p 2 q 2 r 2 - 28 (q 3 r 3 + r 3 p 3 + p 3 q 3 ) (a 2 g 2 h 2 x 2 + b 2 h 2 fy + c 2 / 2 g 2 z 2 ) 
+ 3 (3p s — 14p s qr + 130pyr 2 + 13 Qp 2 q 3 r 3 — 42 qh A )f 2 yz 
+ 3 (3q 8 — 14>q 6 pr + 130q*p 2 r 2 + 1 S6q 2 p 3 r 3 — 42?^p 4 ) g 2 zx 
+ 3 (3r 8 — 14r 6 pq + 130r*p 2 q 2 + 1S6r 2 p 3 q 3 — 42py) li 2 xy ; 
and we thence obtain by symmetry the complete value of (*\x, y, z, wf, viz. we have 
only to complete the literal parts of the foregoing expression into the forms 
o?g 2 h 2 x 2 + b 2 h 2 f 2 y 2 + c 2 f 2 g 2 z 2 + a?b 2 c 2 w 2 , 
f'-yz + a?xw, 
g 2 zx + bhyiu, 
c-xy + d 2 zw, 
respectively. 
20. The equation of the torse thus is 
A = a s g 6 h e x s + b 6 h 9 fy 4- c G f 6 g (i z 6 + a s b s chu s 
—f 6 (№ y + r f z y Q^y + & z y 
— g 6 (f 2 z + h 2 x) 3 (c 2 z + a 2 x ) s 
— h 6 (g 2 x + f 2 y) 3 + b 2 y ) 3 
— a 6 (g 2 x + c 2 w) 3 (h 2 x + bhu ) 3 
— 6 6 (h 2 y + ahuf (f 2 y + c 2 w) 3 
— c 6 ( f 2 z + bhu) 3 (g 2 z + a?w) 3 
+ (b 2 fhy + c 2 f 2 z + b 2 c 2 w ) 3 [(hhy +g 2 z + a?w) 3 - 27a?g 2 h? yzw ] 
+ {d 2 g 2 x + chfz + c 2 ahu) 3 [(f 2 z + h 2 x + bhvf - 27b 2 h 2 f 2 zxiu] 
+ (a 2 h 2 x + b 2 lihy + a 2 bhu) 3 [{g 2 x +f 2 y + chu) 3 - 27c 2 f 2 g 2 xyw] 
+ (g 2 h 2 x + h 2 f 2 y + f 2 g 2 zj [{a?x + bhj + c 2 * ) 3 - 27a 2 & 2 c 2 xyz ] 
+ xyzw (*][x, y, z, w) 2 = 0. 
I recall that 
a = /3-y, f = a-8, p = af=(cc-8)(/3 - y), 
b = y — a, g = /3 — 8, q = bg = (/3 — 8)(y — a), 
c = a — /3, h = y-8, r=ch = (y-8)(a-/3). 
Developing, we have finally the equation of the torse m the form following.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.