Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

112 
ON A CERTAIN SEXTIC TORSE. 
[436 
Equation of the Sextic Torse. 
21. The equation is 
0= (a e g e h 6 , b K h 6 f 6 , c e f e g 6 , a e b 6 c 6 7fxP, y r \ z s , uf) 
4- 3 (q 2 + г 2 ) (b 4 h 4 f 6 , c 4 g 4 f H , g 4 h*a 6 , b i c 4 a e fgy 5 z } yz 3 , xhv, xvf) 
4- 3 (r 2 + ft 2 ) (c 4 f 4 g 6 , a 4 h 4 g R , h 4 f 4 b s , zx\ yhv, yw 5 ) 
+ 3 (p 2 4- q 2 ) (a 4 g 4 h 6 , b 4 f 4 h R , f 4 g 4 c R , а 4 Ъ 4 с 3 \а?у, xy r °, zhv, za? ) 
+ 3 (g 4 4- 3fr 2 4- r 4 ) (b 2 h 2 f 6 , c 2 g 2 f 6 , g 2 h 2 a R , b 2 c 2 a 6 fgfz 2 , y 2 z 4 , afw 2 , а?и?) 
+ 3 (r 4 + 3 r 2 p 2 4- p 4 ) (c 2 f 2 g 6 , a 2 h 2 g 6 , h 2 f 2 b e , с 2 а 2 ¥\г 4 х 2 , x?z*, yhv 2 , yhv 4 ) 
+ 3 (p 4 + 3p 2 q 2 + q 4 ) (a 2 g 2 h 6 , b 2 f 2 h 6 , f 2 g 2 &, a 2 b 2 c R \x 4 y 2 , xhf, zhv 2 , z 2 w 4 ) 
+ (6p 4 + 9p 2 q 2 + 9p 2 r 2 - 21q 2 r 2 ) (a 2 g 4 h 4 , a 2 b 4 c\ f 2 h 4 b 4 , f 2 g 4 c 4 fx A yz, w 4 yz, tfwx, zhvy) 
+ (ßq 4 + 9q 2 r 2 + 9q 2 p 2 — 21r 2 p 2 ) (b 2 h 4 / 4 , b 2 c 4 a 4 , g 2 f 4 c 4 , g 2 h 4 a 4 fy 4 zx, w 4 zx, z 4 wy, x*wz) 
+ (6r 4 + 9r 2 p 2 4- 9rY - 21p 2 q 2 )(c 2 f 4 g 4 , c 2 a 4 b 4 , h 2 g 4 a 4 , li 2 f 4 b 4 \2?xy, w 4 xy, x 4 wz, y 4 wx) 
+ (q e 4- 9q 4 r 2 + 9q 2 r 4 4- r 6 ) (/ 6 , a 6 ][y 3 z 3 , x?w 3 ) 
+ (r 6 4- 9r^ 2 + 9r 2 p 4 + p R ) (g 6 , b R \z 3 x 3 , y 3 w 3 ) 
+ (p e + 9p 4 q 2 + 9p 2 q 4 + q 6 ) (h 6 , c 6 \a?y 3 , zhv 3 ) 
+ 9 (q 4 r 2 + qh A + r 4 p 2 + r 2 p 4 + p 4 q 2 4- phf — 14p 2 q 2 r 2 ) 
X ( f 2 g 2 h 2 , f 2 b 2 c 2 , g 2 c 2 a 2 , h 2 a 2 b 2 \x 2 y 2 z 2 , y 2 z 2 w 2 , z 2 x 2 w 2 , x 2 y 2 w 2 ) 
+ 3 {p 3 + 3p 4 (2q 2 4- r 2 ) + 3p 2 (q 4 — 7q 2 r 2 ) + q 4 r 2 } 
X (g 2 h 4 , h 4 b 2 , g 2 c 4 , c 4 b 2 \x 3 y 2 z, y 3 wx 2 , zhv 2 x, w 3 yz 2 ) 
4- 3 {ç 6 + 3ç 4 (2r 2 + p 2 ) 4- 3q 2 (r 4 — 7r 2 p 2 ) 4- i A p 2 } 
X (A 2 / 4 , f 4 c 2 , h 2 a 4 , a 4 c 2 '§xy 3 z 2 , z 3 wy 2 , x?w 2 y, w 3 zx 2 ) 
4- 3 {r 6 + 3r 4 (2p 2 + q 2 ) + 3r 2 (p 4 - 7p 2 q 2 ) + p 4 q 2 } 
X (f“f> f a ~> f 2 b> b 4 a 2 fx 2 yz 3 , a?wz 2 , yhv 2 z, w 3 xy 2 ) 
+ 3 {_p s 4- 3p 4 (2r 2 + q 2 ) + 3p 2 (r 4 — 7q 2 r 2 ) + fr 4 } 
X (fh 2 , h 2 b 4 , g 4 c 2 , c 2 b 4 \a?yz 2 , y 3 w 2 x, zhva?, w 3 y 2 z) 
+ 3 {q 6 + 3q 4 (2p 2 + r 2 ) + 3q 2 (p 4 - 7r 2 p 2 ) + r 2 p 4 } 
X (A 4 / 2 , f 2 c 4 , h 4 a 2 , a 2 c 4 ^x 2 y 3 z, z 3 wy 2 , x?ivy 2 , w 3 z 2 x) 
+ 3 {r® + 3r 4 (2q 3 + p 2 ) + 3r 2 (q 4 — 7p 2 q 2 ) + p 2 q 4 } 
X (f 4 f> ( f a \ f 4 b‘ 2 , b 2 a 4 fixy 2 z 3 , a?w 2 z, yhvz 2 , w 3 x 2 y) 
i — 3 {Q2p 2 q 2 r st — 28 (q 3 r R + т^р 3 + p\f)} (arg 2 h 2 , b 2 h 2 f 2 , c 2 f 2 g 2 , а 2 Ъ 2 с 2 \х 2 , у 2 , z 2 , w 2 ) ' 
+ 3 (3p 8 — 14p e qr + 1 'S0p 4 qh' 3 + 136p 2 q 3 r 3 — 42q*r*) (f 2 , a 2 \yz, xw) 
+ 3 (3q s — \Aq e rp + lo0q 4 r 2 p 2 + 136r/-V 3 /r 3 — 42r 4 p 4 ) 
+ 3 (3r 8 — 14r s pq + 1 '?>Qr 4 p 2 (f 4-136r 2 p 3 q 3 — 4<2p 4 q 4 ) 
4- xyzw 
(f , b 2 \zx, yw) 
{h 2 , c 2 \xy, zw)
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.