Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

114 
ON A CERTAIN SEXTIC TORSE. 
[436 
+ (/3 8 + 9/3V + 9/3Y + 7 s ) (1, a 6 ^y^ 3 , f 3 &> 3 ) 
+ (7 s + 97 4 a 2 + 97 2 a 4 4- a 8 ) (1, /3 8 $yf 3 , r) 3 a> 3 ) 
+ (a 8 + 9a 4 /3 2 + 9a 2 /3 4 + /3 8 ) (1, 7 6 $fY £ 3 a> 3 ) 
4- 3 {a 8 + 3a 4 (2/3 2 + 7 2 ) + 3a 2 (/3 4 - 7/3y) +/3y} (1, /3 2 , 7 4 , WW'vV, V e <*T, *>V£ 4 ) 
+ 3 {/3 8 + 3/3 4 (27 2 + a 2 ) 4- 3/3 2 (7 4 - 77 2 a 2 ) + T 4 a 2 } (1, 7' 3 , a 4 , 7 2 a 4 ][ J7 8 £ 4 £ 2 , £ 8 û>y, f 8 «y 4 ?? 2 , tu 8 ^ 2 | 4 ) 
4- 3 Y + 3 7 4 (2a 2 + /3 2 ) 4- 3 7 2 (a 4 - 7a 2 /3 2 ) 4- a 4 /3 2 } (1, a 2 , £ 4 , a 2 /3 4 $£ 8 | 4 >f, f 8 ar£ 4 , t/W^ 2 , a> 8 £y) 
4- 3 {a 8 + 3a 4 (2r + /3 2 ) + 3a 2 ( 7 4 - 7/3 2 7 2 ) + /3y} (1, 7 2 , /3 4 , PY^vV, «VP) 
+ 3 {/3 8 + 3/3 4 (2a 2 + 7 2 ) + 3/3 2 (a 4 - 77 2 a 2 ) + 7 2 a 4 } (1, a 2 , y 4 , y 4 a 2 ^yf 2 ! 4 , f 8 « 2 ?? 4 , Ç 6 m 4 rf, et> 8 £ 4 f 2 ) 
4- 3 { 7 8 4- 3 7 4 (2yS 2 + a 2 ) + 3 7 2 (/3 4 - 7a 2 /3 2 ) 4- a 2 /3 4 } (1, /3 2 , a 4 , a 4 /3 2 ££ 6 £y, V WÇ 4 , ®W) 
4- 9 (/3 J 7 2 4- /3y + 7 4 a 2 + 7 2 a 4 4- a 4 /3 2 4- a 2 /3 4 — 14a 2 /3y) 
(1, /3y, 7 2 a 2 , aYWvV, vT< №» 4 , ÏVY 
( — 3 |62a 2 /3y — 28 (/3y 4- 7 s « 3 + a :i /3 3 )} (a 2 , /3 2 , 7 2 , a 2 /3y][|f 4 , Y £ 4 , a» 4 ) ^ 
! + 3 (3a 8 - 14a 8 /3 7 + 130a 4 /3y + 136a 2 /3y - 42/3Y) (1, a 2 $y£ 2 , fW) 
4- £ 2 V 2 £ 2a)2 : r- 
j + 3 (3/3 8 - 14/3 8 7a + 130/3 4 7 2 a 2 +136 y 3 2 7 3 a 3 - 427 4 a 4 ) (1, /3 2 ££ 2 £ 2 , t?W) 
-f 3 (37 8 — 147 8 a/3 + 130T 4 a 2 /3 2 + 1367 2 a 3 /3 3 — 42a 4 /3 4 ) (1, 7 2 $yy, Ç’ 3 « 2 ) , 
This agrees with the result given in Salmon’s Solid Geometry, Ed. 2, p. 151, [Ed. 4, 
p. 178], and Quarterly Mathematical Journal, vol. 11. p. 220 (1858); in the latter place, 
however, the term 
/3Y£ 4 + ŸvV + a T°> 4 + «WY« 8 
is by mistake written 
/Syf 4 4- 7 2 ?? 4 £ 8 4- a 8 £ 8 &) 4 4- /3y| 4 û> 8 ; 
viz. a factor a 8 is omitted in one of the coefficients. 
Some of the coefficients are presented under slightly different forms ; viz. instead of 
62a 2 /3 2 y 2 — 28 (/3y + y' ! a :! 4- a 3 /3 3 ) 
Salmon has 
14 (/3 4 y 2 4- /3y 4- 7 4 a 2 4- 7 2 a 4 4- a 4 /3 2 4- a 2 /3 4 ) 4- 20a 2 /3 2 y' 2 ; 
and instead of 
3a 8 — 14a 8 /37 4- 130a 4 /3y 4- 136a 2 /3Y — 42/3Y, 
he has 
— 4a 8 + 7a 8 (/3 2 4- 7 2 ) + 196a 4 /3Y — 68a 2 /3Y (/3 2 4- 7 2 ) — 42/3y, 
but these different forms are respectively equivalent in virtue of the relation 
a 4- /3 4- 7 = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.