Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

446] 
OF A NODAL BICIRCULAR QUARTIC. 
185 
which, in fact, show that the locus is a bicircular quartic. To put in evidence the 
third node, I assume that the values belonging thereto are m = Mj, u — u 2 , and that 
the coordinates of the node are a, ft ; we have thus 
M, 2 — 1 , to 2 — m 2 2tom x n£ — 1 7 u£ — to 2 2tom 2 
oc = - a „ — c —- ;—-, = — a „ . v + ft-r-: C 
m x 2 + 1 u£ + to 2 lij 2 4- m 2 
m 2 2 +1 Mo 2 + to 2 m 2 2 + to 2 ’ 
2 Mi 2mtq m x 2 — to 2 _ 2m 2 , 2mM 2 m 2 2 4- m 2 
^ a Mj 2 + 1 + m 2 2 + m 2 + ° M 2 2 + to 2 ’ a u.£ + 1 m 2 2 + to 2 ° m 2 2 4- m 2 ' 
These give 6, c, a, ¡3 in terms of a, to, u 1} u 2 ; and we may then express the values 
of x — a, y — ft in terms of a, to, u lt m 2 , u. I find 
b =i f 1 + («,^+^¿+'1) [(!<1 + “ a)!+(1 “ ra)(1 ~ “- )] | ■ 
c = 
to + 1 
1 (V+WTT) [ -(“. + “=)(» -«,«,) ]p 
and then 
x = — a 
u 2 — 1 a 
to 4-1 
+1 + m I" 1 + (V + 1)W + 1) [( “‘ + “ !)i + (1 - (1 - ^“ a)] f 
№ f TO 4-1 r / w 2tom 
+ m| («,’ + !) („/+!)[ + -«.»>) 1}^^. 
2tt af-, 
2/= + — 1— 1 + 
TO + 1 r/ \o /i X /1 ,-d 2tom 
[(tq + m 2 )- + (1 — to) (1 - Mj m 2 )] 
m 2 + 1 to ( (m 2 2 4-1) (m 2 2 4- 1) 
I®! m 4' 1 r / .\/ \ -|) m 
+ ml («,« + l)(^ + l) [ -(». +«.)(“-»A) ]}- 
a to 4-1 w x 
a = — , „ , 1W 9 , -.x (1 — MiM 2 ) (to 4- ih m 2 ) 
to (u£ + 1) (u£ + 1) ' v y 
m 2 4- to 2 
m 2 — TO 2 
+ to 2 ’ 
_ a to 4-1 / w . 
^ = m (u,* +1) («,»+ 1)+ “O (« + «.%); 
and then 
(*-«) = - w+1)w + 1) ( tf+1)(M , + m>) X P - («- + rn) + (1 - rn) («, + ) »], 
iy —ft) —— ( Wi 2 + 1 )( M2 2 + !) ( tt ». + i )(u* + m?) * ^ + u2 ) ^ U ~ + ^ 171 } ^ ~ UlU J u 
where, of course, the factors (u — г¿ 1 ), (u — m 2 ) indicate the node (a, ft). We have moreover 
(x rrl 2 i (v RY - 4 (to + l) 2 a? (m-m 1 ) 2 (m-m 2 ) 2 
^ ^ (zq 2 + 1) (u.£ +1) ( a 2 4 1) (m 2 + to 2 ) ’ 
so that, writing 
__ _ x-rx 1 [(1 — M]M 2 ) (m 2 + to) + (1 - m) (m x 4- u. 2 ) m] 
(x — a) 2 + (y — ft) 2 2(to+1)m (m — Mj) (m - u£) 
y — ft _ 1 [(mj + m 2 )(m 2 4- to) - (1 - to) (1 - M t M 2 ) m] 
(m — u£) (u — m 2 ) ’ 
(a? — a) 2 4 (y — /3) 2 2 (to 4 1) a 
C. VII. 
24
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.