[459
459]
ON THE DOUBLE-SIXERS OF A CUBIC SURFACE.
327
and
The line (a, b, c, f g, h) is given as the intersection of any two of the four planes
( h, -g, a \x, y, z, w) = 0,
- K f b
9> ~f c
— a, —b, —c,
or substituting for x, y, z, w the values X + Y+Z —10, Z, —X+Y+Z—10, Y, these
become
( 9 > a~9 ,
-f-h, b+f-h,
9 > c+g ,
c —a, — c — a ,
h-g ,
f-h ,
9-f »
g \X,Y,Z, 10) = 0,
h-g
-9
c + a
or, what is the same thing,
( . , 2g —a+ c , 2g-f-h , -2# 7, 10) = 0.
— 2g + a — c, . , a + b + c + /— /¿, —a—c
-2g+f+h, —a—b—c—f+h, . , —f+h
2g , a + c , -/+A
And substituting, we have the equations of the several lines, viz.:
(!')
X + Y
= 10,
£=0,
(2)
- X + 7
= 10,
z=o,
(3')
- X + Z
= 10,
7=0,
(4)
x+ z
= 10,
7=0,
(S')
. ,
40,
5,
- 4
№
F 2, 10) = 0,
-40,
• 3
55,
-36
- o,
— 55,
• 3
1
4,
36,
- 1,
•
(6') ( • ,
— 35,
10,
- 7
№
F, F 10) = 0,
-35,
• 3
55,
- 28
-10,
-55,
• 3
3
7,
28,
- 3,
.