358
NOTE ON PLANAS LUNAR THEORY.
[4 6 4
but, by an error which is implicitly corrected, the cr which multiplies (1 + s 2 ) - 2 J Udv
is omitted. Hence the equation (6) becomes
du dn — o-(l + s 2 )“$2 J Udvr
(1 + 2
d 2 Bu
dv 2
+ Sii] = —■
/ o’ a,
Ÿ( e > 7)
a-
dv u 2 dv
+ (1 + 2 J Udv)f(e, y) Q'e cos (cv — j’zjdv)
-(1 + 2/mv)[/(e, 7 )(l+y)(l +s ;)-i-^+£ÿ}
+ (1 + 2 J Udv) f(e, y) Py 2 (1 + s 2 )~^ (*),
era.
U, p. 265,
in which equation
dCL s dil - „ _, „ dO
H 2 =-t-+- -T-, pp- 26, 24o, a
aw m as w 2 dv x 3 (l+y 2 )=
f (e, y) = A^(l+y 2 )" 1 , /(e, y) = X 3 (1 + y 2 ) 3 , p. 261.
But retaining for greater convenience the function f(e, y) in two of the terms,
we have
(1+2
d 2 Bu
dv 2
+ Bu
a ^ 2
era
■V o /T „\4 (dii 5 dH era, -y-T-dw ... . a _ f Tr7
-A 3 (l + y 2 ) 3 /^+- ^ <—P^ _cr(l + s 2 ) *2 Udv
■, [du u ds x 3 (l+y 2 ) 2 dv v ' J
+ (1 + 2 J Udv) f(e, y) Q'e cos (cv — J vrdv)
- (1 + 2 j Udv) A 3 (1 + y 2 )^ j(l + S/ 2 )” f - ^ (1 + s 2 ) _i |
+ (1 + 2 J Udv) f(e, y)Py 2 (l + 5 / 2 )- | @
= -^(l+yf(f + -S
o-a / \du u ds )
-a U
du
dv
Udv
- — X 3 (1 + y 2 ) 3 (1 + s 2 ) - 2 [
a / J
+ (1 + 2 J Udv) f(e, y) Q'e cos (cv — j vrdv)
- (1 + 2 J Udv) X 3 (1 + y 2 ) 3 1(1 + «/)“* (1 + S *)-*J
+ (1 + 2 J Udv)f(e, y) Py 2 (1 + s, 2 )" 1 0,