Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

358 
NOTE ON PLANAS LUNAR THEORY. 
[4 6 4 
but, by an error which is implicitly corrected, the cr which multiplies (1 + s 2 ) - 2 J Udv 
is omitted. Hence the equation (6) becomes 
du dn — o-(l + s 2 )“$2 J Udvr 
(1 + 2 
d 2 Bu 
dv 2 
+ Sii] = —■ 
/ o’ a, 
Ÿ( e > 7) 
a- 
dv u 2 dv 
+ (1 + 2 J Udv)f(e, y) Q'e cos (cv — j’zjdv) 
-(1 + 2/mv)[/(e, 7 )(l+y)(l +s ;)-i-^+£ÿ} 
+ (1 + 2 J Udv) f(e, y) Py 2 (1 + s 2 )~^ (*), 
era. 
U, p. 265, 
in which equation 
dCL s dil - „ _, „ dO 
H 2 =-t-+- -T-, pp- 26, 24o, a 
aw m as w 2 dv x 3 (l+y 2 )= 
f (e, y) = A^(l+y 2 )" 1 , /(e, y) = X 3 (1 + y 2 ) 3 , p. 261. 
But retaining for greater convenience the function f(e, y) in two of the terms, 
we have 
(1+2 
d 2 Bu 
dv 2 
+ Bu 
a ^ 2 
era 
■V o /T „\4 (dii 5 dH era, -y-T-dw ... . a _ f Tr7 
-A 3 (l + y 2 ) 3 /^+- ^ <—P^ _cr(l + s 2 ) *2 Udv 
■, [du u ds x 3 (l+y 2 ) 2 dv v ' J 
+ (1 + 2 J Udv) f(e, y) Q'e cos (cv — J vrdv) 
- (1 + 2 j Udv) A 3 (1 + y 2 )^ j(l + S/ 2 )” f - ^ (1 + s 2 ) _i | 
+ (1 + 2 J Udv) f(e, y)Py 2 (l + 5 / 2 )- | @ 
= -^(l+yf(f + -S 
o-a / \du u ds ) 
-a U 
du 
dv 
Udv 
- — X 3 (1 + y 2 ) 3 (1 + s 2 ) - 2 [ 
a / J 
+ (1 + 2 J Udv) f(e, y) Q'e cos (cv — j vrdv) 
- (1 + 2 J Udv) X 3 (1 + y 2 ) 3 1(1 + «/)“* (1 + S *)-*J 
+ (1 + 2 J Udv)f(e, y) Py 2 (1 + s, 2 )" 1 0,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.