Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

362 
NOTE ON THE LUNAR THEORY. 
[465 
-iy 2 c 
sin 
c 4- 2g 
- i Ÿe 2 
33 
2c — 2$r 
-l|y 2 C 2 
33 
2c 4- 2p 
+ Á7 4 
33 
4p. 
y (Plana) = 
y _ 
ye 2 
— t 7 3 
sin 
9 
4- ye — 
t 76 s 
33 
c- g 
4- ye — 
f 7e 3 
~ 17 3 e 
33 
c+ g 
+ I ye 2 
33 
2c- g 
+ | ye 2 
33 
2c 4- g 
4-^ye 3 
33 
3c- g 
+ 1 76 3 
33 
Sc+ g 
_ 1 
2 4 7 
33 
3g 
+ h y 3 e 
33 
c —3 g 
- ïï 7 3 c 
33 
c+3g. 
To compare these with the elliptic values, it is necessary to write e (1 + £ y 2 ) in 
place of e. Making this change, or say reducing Plana’s (e, y) to the elliptic (e, y), 
I write down in a first column the transformed coefficients, and in a second column 
the elliptic coefficients, as follows: 
Plana, with Elliptic e, y 
1 
1 
Elliptic 
1 
+ e - $ e 3 
4- e 2 —| e 4 
+ Ä e 3 
+ t* 4 
-f y 2 e 2 
-f y 2 e 
1 
+ e — -|e 3 
4- e 2 - £ e 4 
+ I* 3 
+ fe 4 
0 
0 
cos c 
33 
33 
2 G 
3c 
33 
33 
33 
4c 
2 g 
c-2g. 
Plana, with Elliptic e, 7 
Elliptic 
V — 
2 
Z 
+ 
2 
e -1 e 3 
4- 
2 
e — ^e 3 
sin 
c 
4- 
5 
4 
e 2 ~ M e 4 — ^ 7 2 e 2 
+ 
5 
4 
e 24 e 
33 
2c 
4- 
13 
T2 
e 3 
4- 
13 
T2 
e 3 
33 
3c 
4- 
103 
W 
e 4 
4- 
103 
e 4 
33 
4c 
- 
i 
7 2 - re r ß2 + s 7 4 
- 
l 
4 
y 2 4- y 2 e 2 4-1 y 4 
33 
2g 
+ 
a 
4 
y' 2 e 
- 
1 
2 
y 2 e 
33 
c 
-29 
- 
1 
2 
y 2 e 
- 
1 
2 
y 2 e 
33 
c 
+ % 
- 
y 2 e 2 
4- 
3 
16 
y 2 e 2 
33 
2c 
-% 
- 
13 
TÏÏ 
y 2 e 2 
- 
13 
TÏÏ 
y 2 e 2 
33 
2c 4- 2<7 
4- 
1 
32 
7 4 
4- 
1 
32 
7 4 
33 
4,7-
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.