466]
SECOND NOTE ON THE LUNAR THEORY.
369
cin | (1 +7 2 ) (1 - Vl +7 2 ) dn
dg no? Vl — e 2 7 dl
dil
de ’
dg _ 2 dil 1 — e 2 — Vl — e 2 dO 1 + 7 2 dil
d£ iia da ?ia 2 e de na 2 Vl —V 2 7 t/7 ’
d£ _ 2 ciO 1 — e 2 — Vl + e" dn (1 + 7 2 ) (1 — Vl -f 7 s ) dL2
d£ ?ia c?a wa 2 e de na ? Vl — V 7 ¿7'
The disturbing function contains the term
ndrdcd (+ y| e 2 7 2 ) cos 2c — 2¿7.
If after the differentiations we write for greater simplicity a = 1, n = 1, we have
c¿7 1 7 2
?ia 2 Vl — e 2 7
dc _ 2 dii 1 — e 2
dt na da na 2 e
dn
da
dn
de
dn
dry
dn
dc
dn
dg
= + Li m-e-ry 2
COS
2c - 2g,
= + Li m 2 e y 2
55
2c - 2g,
= + - 1 jj- m 2 e 2 7
55
2c - 2g,
= — Li m-e'ry 2
sin
2c — 2gr,
= — Li m 2 e 2 7 2
55
2c — 2<7,
and the formulae for the variations give
da
dt
2
/dn
V dc
dn\
+ dg)
= 0
de
dt
1
e
dn
dc
= — V' ^dery 1
sin
2c - 2^,
II
1 so
1
7
dn
dg
= — ^ m 2 e 2 7
55
2c - 2g,
dc
dt
1
e
dn
de
= m2 7 2
COS
2c - 2g,
II
1
7
dn
dy
= — m 2 e 2
55
2c - 2^,
aj a.
cs. 1 O*
II
-2
dn
da
, dn
+ i e is
+ i7^ = (-¥+«+«=)-¥
55
2c - 2$r,
but this value of is, as will presently be seen, incomplete.
C. VII.
47