ON THE DETERMINATION OF THE
418
[476
orbit-plane is z — 0. We have therefore merely to transform the equations of the ray
to the new axes by writing for x, y, z, the values
ax' + ay' + a" z\
/3x' + fi'y'+13"z',
you' + ry'y' + y "z\
and then putting z = 0, we find x', y', the coordinates in the orbit-plane of its inter
sections with the ray.
47. The equations thus become,
a x + a y' — A — Rf = 0,
fix' + fi'y' — B — Rg = 0,
yx' + y'y' — G — Rh. = 0,
or, what is the same thing, we have
x' : y' : R : 1
=
1
1
-1
- 1
a,
a',
f,
A
a,
f,
A
a,
a',
f, A
a,
a', f,
A
13,
fi',
&
B
fi,
/3', g,
B
fi,
fi',
g, B
/3,
B
Y>
y,
h,
C
y,
y, h,
C
y,
y,
h, G
y,
y, h,
G
=
a',
f,
A
: —
a, f,
A
: —
A,
a, a.'
f,
a, a'
fi',
g>
B
/3, g,
B
B,
fi, fi'
g>
fi, fi'
y,
h,
G
y, h,
c
G,
y, y
h,
y, y
In these formulae we have identically
fiy ~ fi'y, 7 a ' ~ a &' ~ a 'fi = a "> I 3 "’ y"’
and if we write moreover
a, b, c, —Cg — Bh, Ah—Of, Bi—Ag,
(whence identically af + bg + ch = 0, and where (a, b, c, f, g, h) are the “ six coordinates ”
of the ray), then we have the very simple formulae
x’ : y : R : 1
= (a, b, c$V, fi', y') : - (a, b, c$a, fi, 7) : (A, B, O^a", fi", y") : (f, g, h^a", fi", y"),
or omitting (as not required for the present purpose) one of the proportional terms, we
have
x' : y’ : 1 = (a, b, c$V, fi', y) : -(a, b, c][a, fi, 7) : (f, g, h^a", fi", y"),
which are the required expressions for the coordinates.