476]
ORBIT OF A PLANET FROM THREE OBSERVATIONS.
419
48. Consider in the equations just obtained the axis of x as fixed but H as
variable; that is, let the orbit-pole Z' describe a great circle about the fixed pole X
(longitude G, colatitude 90°+i7). We have x', y', 1, proportional to linear functions of
sin H, cos H; viz., writing for shortness
X c = — a sin G + b cos G,
X s = (— a cos G — b sin G) sin N — c cos N,
Y 0 = (— a cos G — b sin G) cos X + c sin X,
W c = ( f cos G + g sin G) sin X + h cos X,
W s = (— f sin G + g cos G),
we have
,_X C cos H + X s sin H
x ~ W c cos H + W g sin H ’
Y 0
J ~ W c cos H + W s sin H'
49. I write
W e 1
T7 =— cos A,
Y 0 m
W. 1 • A
= _ sm A,
Y 0 m
X l
~ = — cos A — cot 8 sin A,
To m
X l
^ = — sin A 4- cot 8 cos A,
Y 0 m
equations which determine m, A, l, 8, viz., we have
W x Y 0
l = m
tan A =
X c cos A + X s sin A
m =
cot 8 =
— X c sin A + X s cos A
Y 0
Vlf c 2 + W s *
1
W c 2 + Ws 2
1
Yo YWI+ WJ 2
{X C W C + X S W S ),
(X S W C — X C W S ),
and we then very easily find
and thence also
x’ = l + m cot 8 tan (H — A),
y’ = m sec (H — A),
y' 2 — (x‘' — If tan 2 8 = w?;
viz. the orbit-plane revolving about the fixed axis SX', meets the ray in a series of
points forming in the orbit-plane a hyperbola having the line SX' for its conjugate
axis.
53—2